11 11分类与监督学习,朴素贝叶斯分类算法

1.理解分类与监督学习、聚类与无监督学习。

简述分类与聚类的联系与区别。

分类就是按照数据的属性给对象贴上标签,再根据标签来分类,属于无监督学习,聚类就是指事先定义好类别,然后通过某种度量(比如距离)将他们分类。

简述什么是监督学习与无监督学习。

  有监督学习:通过已有的训练样本去训练得到一个最优模型,再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现预测和分类的目的,也就具有了对未知数据进行预测和分类的能力。就如有标准答案的练习题,然后再去考试,相比没有答案的练习题然后去考试准确率更高。又如我们小的时候不知道牛和鸟是否属于一类,但当我们随着长大各种知识不断输入,我们脑中的模型越来越准确,判断动物也越来越准确。

  无监督学习:我们事先没有任何训练样本,而需要直接对数据进行建模。比如我们去参观一个画展,我们完全对艺术一无所知,但是欣赏完多幅作品之后,我们也能把它们分成不同的派别。无监督学习主要算法是聚类,聚类目的在于把相似的东西聚在一起,主要通过计算样本间和群体间距离得到,主要算法包括Kmeans、层次聚类、EM算法。

2.朴素贝叶斯分类算法实例

利用关于心脏病患者的临床历史数据集,建立朴素贝叶斯心脏病分类模型。

有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数

目标分类变量疾病:

–心梗

–不稳定性心绞痛

新的实例:–(性别=‘男’,年龄<70, KILLP=‘I',饮酒=‘是’,吸烟≈‘是”,住院天数<7)

最可能是哪个疾病?

上传手工演算过程。

 

性别

年龄

KILLP

饮酒

吸烟

住院天数

疾病

1

>80

1

7-14

心梗

2

70-80

2

<7

心梗

3

70-81

1

<7

不稳定性心绞痛

4

<70

1

>14

心梗

5

70-80

2

7-14

心梗

6

>80

2

7-14

心梗

7

70-80

1

7-14

心梗

8

70-80

2

7-14

心梗

9

70-80

1

<7

心梗

10

<70

1

7-14

心梗

11

>80

3

<7

心梗

12

70-80

1

7-14

心梗

13

>80

3

7-14

不稳定性心绞痛

14

70-80

3

>14

不稳定性心绞痛

15

<70

3

<7

心梗

16

70-80

1

>14

心梗

17

<70

1

7-14

心梗

18

70-80

1

>14

心梗

19

70-80

2

7-14

心梗

20

<70

3

<7

不稳定性心绞痛

 

答:

 设X{x1,x2,x,x1,x1,x1}为影响疾病的因素

Y{y1,y2}为疾病类型,y1为心梗、y2为不稳定性心绞痛

则P(y1)=16/20,P(y2)=4/20,P(X)=1

P(y1|X)=P(X|y1)P(y1)/P(X)=P(x1|y1)P(x2|y1)P(x3|y1)P(x4|y1)P(x5|y1)P(x6|y1)P(y1)/P(X)=7/16*4/16*9/16*3/16*7/16*4/16*16/20/1=0.1009%

P(y2|X)=P(X|y2)P(y2)/P(X)=P(x1|y2)P(x2|y2)P(x3|y2)P(x4|y2)P(x5|y2)P(x6|y2)P(y2)/P(X)=1/4*1/4*1/4*1/4*2/4*2/4*4/20/1=0.0195%

故最可能是心梗。

3.使用朴素贝叶斯模型对iris数据集进行花分类。

尝试使用3种不同类型的朴素贝叶斯:

·高斯分布型

 

#高斯分布型

from sklearn.datasets import load_iris           #导入鸢尾花数据集

from sklearn.naive_bayes import GaussianNB       #导入高斯朴素贝叶斯模型

from sklearn.model_selection import cross_val_score    #模型评估

 

iris=load_iris()        #读取数据

model=GaussianNB()      #构建模型

pre=model.fit(iris.data,iris.target)  #训练模型

y_pre=pre.predict(iris.data)          #模型预测

print("数据总数:",iris.data.shape[0])

print("预测正确个数为:",(iris.target == y_pre).sum())

print("预测错误个数为:",(iris.target != y_pre).sum())

score=cross_val_score(model,iris.data,iris.target,cv=10)     #交叉验证

print("高斯朴素贝叶斯模型准确率为:",score.mean())

 

 

 

 

 

posted @ 2020-06-09 15:09  广宇小陈  阅读(133)  评论(0)    收藏  举报