102302133陈佳昕作业2
作业①:
要求:在中国气象网(http://www.weather.com.cn)给定城市集的7日天气预报,并保存在数据库。
输出信息:
Gitee文件夹链接
1.1代码
from bs4 import BeautifulSoup
from bs4 import UnicodeDammit
import urllib.request
import sqlite3
class WeatherDB:
def openDB(self):
self.con=sqlite3.connect("weathers.db")
self.cursor=self.con.cursor()
try:
self.cursor.execute("create table weathers (wCity varchar(16),"
"wDate varchar(16),wWeather varchar(64),wTemp varchar(32),"
"constraint pk_weather primary key (wCity,wDate))")
except:
self.cursor.execute("delete from weathers")
def closeDB(self):
self.con.commit()
self.con.close()
def insert(self, city, date, weather, temp):
try:
self.cursor.execute("insert into weathers (wCity,wDate,wWeather,wTemp) values (?,?,?,?)",
(city, date, weather, temp))
except Exception as err:
print(err)
def show(self):
self.cursor.execute("select * from weathers")
rows = self.cursor.fetchall()
print("%-16s%-16s%-32s%-16s" % ("city", "date", "weather", "temp"))
for row in rows:
print("%-16s%-16s%-32s%-16s" % (row[0], row[1], row[2], row[3]))
class WeatherForecast:
def __init__(self):
self.headers = {
"User-Agent": "Mozilla/5.0 (Windows; U; Windows NT 6.0 x64; en-US; rv:1.9pre) Gecko/2008072421 Minefield/3.0.2pre"}
self.cityCode = {"北京": "101010100", "上海": "101020100", "泉州": "101230501",
"厦门": "101230201"} #城市的编码本
def forecastCity(self, city):
if city not in self.cityCode.keys():
print(city + " code cannot be found")
return
url = "http://www.weather.com.cn/weather/" + self.cityCode[city] + ".shtml"
try:
req = urllib.request.Request(url, headers=self.headers)
data = urllib.request.urlopen(req)
data = data.read()
dammit = UnicodeDammit(data, ["utf-8", "gbk"])
data = dammit.unicode_markup
soup = BeautifulSoup(data, "lxml")
lis = soup.select("ul[class='t clearfix'] li")
for li in lis:
try:
date = li.select('h1')[0].text
weather = li.select('p[class="wea"]')[0].text
tem_tag = li.select('p[class="tem"]')[0] #获取温度父标签
span_list = tem_tag.select('span') #最高温标签(可能不存在)
i_tag = tem_tag.select('i')[0] #最低温标签(通常存在)
if len(span_list) > 0:
#场景1:有最高温和最低温(拼接为“最高/最低”)
temp = f"{span_list[0].text}/{i_tag.text}"
else:
#场景2:只有一个温度(直接使用该温度,可标注为“当前温”)
temp = i_tag.text #此时i_tag的文本就是唯一温度
print(city, date, weather, temp)
self.db.insert(city, date, weather, temp)
except Exception as err:
print(err)
except Exception as err:
print(err)
def process(self, cities):
self.db = WeatherDB()
self.db.openDB()
for city in cities:
self.forecastCity(city)
self.db.show()
self.db.closeDB()
ws = WeatherForecast()
ws.process(["北京", "上海", "泉州", "厦门"])
print("completed")
1.2结果:

保存在数据库中:

1.3心得体会:
在网站上查看时发现有时气温只有一个温度,课本上的代码没有考虑到这种情况,所以这一天的天气信息无法输出


因此通过 len(span_list) > 0 判断是否存在最高温:
存在:拼接为 “最高温 / 最低温”(如 “25℃/18℃”);
不存在:直接使用 i 标签的文本(唯一温度,如 “20℃”)

Gitee文件夹链接
https://gitee.com/chen-jiaxin_fzu/2025_crawl_project/blob/master/作业2/1.py
作业②
要求:用requests和json解析方法定向爬取股票相关信息,并存储在数据库中。
候选网站:东方财富网:https://www.eastmoney.com/
新浪股票:http://finance.sina.com.cn/stock/
技巧:在谷歌浏览器中进入F12调试模式进行抓包,查找股票列表加载使用的url,并分析api返回的值,并根据所要求的参数可适当更改api的请求参数。根据URL可观察请求的参数f1、f2可获取不同的数值,根据情况可###删减请求的参数。
参考链接:https://zhuanlan.zhihu.com/p/50099084
输出信息:
Gitee文件夹链接
2.1代码
import requests
import json
import sqlite3
url = "https://push2.eastmoney.com/api/qt/clist/get?np=1&fltt=1&invt=2&fs=m%3A0%2Bt%3A6%2Bf%3A!2%2Cm%3A0%2Bt%3A80%2Bf%3A!2%2Cm%3A1%2Bt%3A2%2Bf%3A!2%2Cm%3A1%2Bt%3A23%2Bf%3A!2%2Cm%3A0%2Bt%3A81%2Bs%3A262144%2Bf%3A!2&fields=f12%2Cf14%2Cf2%2Cf3%2Cf4%2Cf5%2Cf6%2Cf7%2Cf8&fid=f3&pn=1&pz=50&po=1&ut=fa5fd1943c7b386f172d6893dbfba10b&_=1761721260894"
def stock_db():
conn = sqlite3.connect('stock_data.db')
conn.execute('''
CREATE TABLE IF NOT EXISTS stock_info
(
id INTEGER PRIMARY KEY AUTOINCREMENT,
code VARCHAR(20) NOT NULL,
name VARCHAR(20) NOT NULL,
new_price DECIMAL(10,2),
change_percent DECIMAL(8,2),
change_amount DECIMAL(10,2),
volume DECIMAL(10,2),
turnover DECIMAL(15,2),
amplitude DECIMAL(8,2)
)
''')
conn.commit()
conn.close()
#保存数据
def save_to_db(data):
conn = sqlite3.connect('stock_data.db')
conn.execute(
'INSERT INTO stock_info (code, name, new_price, change_percent, change_amount, volume, turnover, amplitude) VALUES (?, ?, ?, ?, ?, ?, ?, ?)',
data)
conn.commit()
conn.close()
#显示数据
def show_db_data():
conn = sqlite3.connect('stock_data.db')
cursor = conn.cursor()
cursor.execute('SELECT id, code, name, new_price, change_percent, change_amount, volume, turnover, amplitude FROM stock_info')
rows = cursor.fetchall()
print("\n数据库中的股票数据:")
print("序号\t代码\t名称\t最新价\t涨跌幅\t涨跌额\t成交量\t成交额\t振幅")
print("-" * 80)
for row in rows:
print(f"{row[0]}\t{row[1]}\t{row[2]}\t{row[3]:.2f}%\t{row[4]:.2f}%\t{row[5]:.2f}\t{row[6]:.2f}万\t{row[7]:.2f}亿\t{row[8]:.2f}")
conn.close()
stock_db()
try:
response = requests.get(url)
structure_data = json.loads(response.text)
diff = structure_data['data']['diff']
print("序号\t代码\t名称\t最新价\t涨跌幅\t涨跌额\t成交量\t成交额\t振幅")
print("-" * 80)
for i in range(20):
code = diff[i]['f12']
name = diff[i]['f14'][:4]
new_price = diff[i]['f2'] / 100
change_percent = diff[i]['f3'] / 100
change_amount = diff[i]['f4'] / 100
volume = diff[i]['f5'] / 10000
turnover = diff[i]['f6'] / 100000000
amplitude = diff[i]['f7'] / 100
print(f"{i+1}\t{code}\t{name}\t{new_price:.2f}\t{change_percent:.2f}%\t{change_amount:.2f}\t{volume:.2f}万\t{turnover:.2f}亿\t{amplitude:.2f}%")
save_data = (code, name, new_price, change_percent, change_amount, volume, turnover, amplitude)
save_to_db(save_data)
except Exception as err:
print(err)
show_db_data()
2.2结果:

存储在数据库的数据:

2.3心得体会
此次实验我学习到通过分析 API 返回的数据结构,如何使用 JSON 格式解析数据,并将其存入数据库。
刚开始直接复制 URL 时,对参数的作用一知半解,后续调试中才逐渐理清核心参数的意义:比如pn控制页码、pz控制每页数据量、fields指定返回的字段(如f12是股票代码、f2是最新价)。另外,接口返回的字段值需要 “逆向解析”:比如接口返回的f2(最新价)是整数 “1534”,实际需要根据单位来调整。
Gitee文件夹链接
https://gitee.com/chen-jiaxin_fzu/2025_crawl_project/blob/master/作业2/2.py
作业③:
要求:爬取中国大学2021主榜(https://www.shanghairanking.cn/rankings/bcur/2021)所有院校信息,并存储在数据库中,同时将浏览器F12调试分析的过程录制Gif加入至博客中。
技巧:分析该网站的发包情况,分析获取数据的api
输出信息:
Gitee文件夹链接
| 排名 | 学校 | 省市 | 类型 | 总分 |
|---|---|---|---|---|
| 1 | 清华大学 | 北京 | 综合 | 969.2 |
录制Gif

3.1代码
观察网页,分别手动抓取信息,构造键值对


import requests
import re
import sqlite3
def college_db():
conn = sqlite3.connect('college_data.db')
conn.execute('''
CREATE TABLE IF NOT EXISTS college_info
(
id INTEGER PRIMARY KEY AUTOINCREMENT,
rank INTEGER NOT NULL,
name VARCHAR(50) NOT NULL,
province VARCHAR(20),
category VARCHAR(20),
score DECIMAL(10,1),
UNIQUE(name)
)
''')
conn.commit()
conn.close()
def save_to_db(data):
conn = sqlite3.connect('college_data.db')
conn.execute(
'INSERT OR IGNORE INTO college_info (rank, name, province, category, score) VALUES (?, ?, ?, ?, ?)',
data)
conn.commit()
conn.close()
def show_db_data():
print("存储在数据库的数据:")
conn = sqlite3.connect('college_data.db')
cursor = conn.cursor()
cursor.execute('SELECT rank, name, province, category, score FROM college_info ORDER BY rank')
rows = cursor.fetchall()
print(f"{'排名':<5}{'学校':<25}{'省市':<10}{'类型':<8}{'总分':<8}")
print("-" * 65)
for row in rows:
print(f"{row[0]:<5}{row[1]:<25}{row[2]:<10}{row[3]:<8}{row[4]:<8}")
conn.close()
college_db()
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36 Edg/117.0.2045.31"
}
url = 'https://www.shanghairanking.cn/_nuxt/static/1762223212/rankings/bcur/2021/payload.js'
response = requests.get(url=url, headers=headers)
page_text = response.text
#定义键集合和值集合(手动整理的映射关系)
keyset = 'a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,_,$,aa,ab,ac,ad,ae,af,ag,ah,ai,aj,ak,al,am,an,ao,ap,aq,ar,as,at,au,av,aw,ax,ay,az,aA,aB,aC,aD,aE,aF,aG,aH,aI,aJ,aK,aL,aM,aN,aO,aP,aQ,aR,aS,aT,aU,aV,aW,aX,aY,aZ,a_,a$,ba,bb,bc,bd,be,bf,bg,bh,bi,bj,bk,bl,bm,bn,bo,bp,bq,br,bs,bt,bu,bv,bw,bx,by,bz,bA,bB,bC,bD,bE,bF,bG,bH,bI,bJ,bK,bL,bM,bN,bO,bP,bQ,bR,bS,bT,bU,bV,bW,bX,bY,bZ,b_,b$,ca,cb,cc,cd,ce,cf,cg,ch,ci,cj,ck,cl,cm,cn,co,cp,cq,cr,cs,ct,cu,cv,cw,cx,cy,cz,cA,cB,cC,cD,cE,cF,cG,cH,cI,cJ,cK,cL,cM,cN,cO,cP,cQ,cR,cS,cT,cU,cV,cW,cX,cY,cZ,c_,c$,da,db,dc,dd,de,df,dg,dh,di,dj,dk,dl,dm,dn,do0,dp,dq,dr,ds,dt,du,dv,dw,dx,dy,dz,dA,dB,dC,dD,dE,dF,dG,dH,dI,dJ,dK,dL,dM,dN,dO,dP,dQ,dR,dS,dT,dU,dV,dW,dX,dY,dZ,d_,d$,ea,eb,ec,ed,ee,ef,eg,eh,ei,ej,ek,el,em,en,eo,ep,eq,er,es,et,eu,ev,ew,ex,ey,ez,eA,eB,eC,eD,eE,eF,eG,eH,eI,eJ,eK,eL,eM,eN,eO,eP,eQ,eR,eS,eT,eU,eV,eW,eX,eY,eZ,e_,e$,fa,fb,fc,fd,fe,ff,fg,fh,fi,fj,fk,fl,fm,fn,fo,fp,fq,fr,fs,ft,fu,fv,fw,fx,fy,fz,fA,fB,fC,fD,fE,fF,fG,fH,fI,fJ,fK,fL,fM,fN,fO,fP,fQ,fR,fS,fT,fU,fV,fW,fX,fY,fZ,f_,f$,ga,gb,gc,gd,ge,gf,gg,gh,gi,gj,gk,gl,gm,gn,go,gp,gq,gr,gs,gt,gu,gv,gw,gx,gy,gz,gA,gB,gC,gD,gE,gF,gG,gH,gI,gJ,gK,gL,gM,gN,gO,gP,gQ,gR,gS,gT,gU,gV,gW,gX,gY,gZ,g_,g$,ha,hb,hc,hd,he,hf,hg,hh,hi,hj,hk,hl,hm,hn,ho,hp,hq,hr,hs,ht,hu,hv,hw,hx,hy,hz,hA,hB,hC,hD,hE,hF,hG,hH,hI,hJ,hK,hL,hM,hN,hO,hP,hQ,hR,hS,hT,hU,hV,hW,hX,hY,hZ,h_,h$,ia,ib,ic,id,ie,if0,ig,ih,ii,ij,ik,il,im,in0,io,ip,iq,ir,is,it,iu,iv,iw,ix,iy,iz,iA,iB,iC,iD,iE,iF,iG,iH,iI,iJ,iK,iL,iM,iN,iO,iP,iQ,iR,iS,iT,iU,iV,iW,iX,iY,iZ,i_,i$,ja,jb,jc,jd,je,jf,jg,jh,ji,jj,jk,jl,jm,jn,jo,jp,jq,jr,js,jt,ju,jv,jw,jx,jy,jz,jA,jB,jC,jD,jE,jF,jG,jH,jI,jJ,jK,jL,jM,jN,jO,jP,jQ,jR,jS,jT,jU,jV,jW,jX,jY,jZ,j_,j$,ka,kb,kc,kd,ke,kf,kg,kh,ki,kj,kk,kl,km,kn,ko,kp,kq,kr,ks,kt,ku,kv,kw,kx,ky,kz,kA,kB,kC,kD,kE,kF,kG,kH,kI,kJ,kK,kL,kM,kN,kO,kP,kQ,kR,kS,kT,kU,kV,kW,kX,kY,kZ,k_,k$,la,lb,lc,ld,le,lf,lg,lh,li,lj,lk,ll,lm,ln,lo,lp,lq,lr,ls,lt,lu,lv,lw,lx,ly,lz,lA,lB,lC,lD,lE,lF,lG,lH,lI,lJ,lK,lL,lM,lN,lO,lP,lQ,lR,lS,lT,lU,lV,lW,lX,lY,lZ,l_,l$,ma,mb,mc,md,me,mf,mg,mh,mi,mj,mk,ml,mm,mn,mo,mp,mq,mr,ms,mt,mu,mv,mw,mx,my,mz,mA,mB,mC,mD,mE,mF,mG,mH,mI,mJ,mK,mL,mM,mN,mO,mP,mQ,mR,mS,mT,mU,mV,mW,mX,mY,mZ,m_,m$,na,nb,nc,nd,ne,nf,ng,nh,ni,nj,nk,nl,nm,nn,no,np,nq,nr,ns,nt,nu,nv,nw,nx,ny,nz,nA,nB,nC,nD,nE,nF,nG,nH,nI,nJ,nK,nL,nM,nN,nO,nP,nQ,nR,nS,nT,nU,nV,nW,nX,nY,nZ,n_,n$,oa,ob,oc,od,oe,of,og,oh,oi,oj,ok,ol,om,on,oo,op,oq,or,os,ot,ou,ov,ow,ox,oy,oz,oA,oB,oC,oD,oE,oF,oG,oH,oI,oJ,oK,oL,oM,oN,oO,oP,oQ,oR,oS,oT,oU,oV,oW,oX,oY,oZ,o_,o$,pa,pb,pc,pd,pe,pf,pg,ph,pi,pj,pk,pl,pm,pn,po,pp,pq,pr,ps,pt,pu,pv,pw,px,py,pz,pA,pB,pC,pD,pE'.split(',')
valueset = ["",'false','null',0,"理工","综合",'true',"师范","双一流","211","江苏","985","农业","山东","河南","河北","北京","辽宁","陕西","四川","广东","湖北","湖南","浙江","安徽","江西",1,"黑龙江","吉林","上海",2,"福建","山西","云南","广西","贵州","甘肃","内蒙古","重庆","天津","新疆","467","496","2025,2024,2023,2022,2021,2020","林业","5.8","533","2023-01-05T00:00:00+08:00","23.1","7.3","海南","37.9","28.0","4.3","12.1","16.8","11.7","3.7","4.6","297","397","21.8","32.2","16.6","37.6","24.6","13.6","13.9","3.3","5.2","8.1","3.9","5.1","5.6","5.4","2.6","162",93.5,89.4,"宁夏","青海","西藏",7,"11.3","35.2","9.5","35.0","32.7","23.7","33.2","9.2","30.6","8.5","22.7","26.3","8.0","10.9","26.0","3.2","6.8","5.7","13.8","6.5","5.5","5.0","13.2","13.3","15.6","18.3","3.0","21.3","12.0","22.8","3.6","3.4","3.5","95","109","117","129","138","147","159","185","191","193","196","213","232","237","240","267","275","301","309","314","318","332","334","339","341","354","365","371","378","384","388","403","416","418","420","423","430","438","444","449","452","457","461","465","474","477","485","487","491","501","508","513","518","522","528",83.4,"538","555",2021,11,14,10,"12.8","42.9","18.8","36.6","4.8","40.0","37.7","11.9","45.2","31.8","10.4","40.3","11.2","30.9","37.8","16.1","19.7","11.1","23.8","29.1","0.2","24.0","27.3","24.9","39.5","20.5","23.4","9.0","4.1","25.6","12.9","6.4","18.0","24.2","7.4","29.7","26.5","22.6","29.9","28.6","10.1","16.2","19.4","19.5","18.6","27.4","17.1","16.0","27.6","7.9","28.7","19.3","29.5","38.2","8.9","3.8","15.7","13.5","1.7","16.9","33.4","132.7","15.2","8.7","20.3","5.3","0.3","4.0","17.4","2.7","160","161","164","165","166","167","168",130.6,105.5,2025,"学生、家长、高校管理人员、高教研究人员等","中国大学排名(主榜)",25,13,12,"全部","1","88.0",5,"2","36.1","25.9","3","34.3","4","35.5","21.6","39.2","5","10.8","4.9","30.4","6","46.2","7","0.8","42.1","8","32.1","22.9","31.3","9","43.0","25.7","10","34.5","10.0","26.2","46.5","11","47.0","33.5","35.8","25.8","12","46.7","13.7","31.4","33.3","13","34.8","42.3","13.4","29.4","14","30.7","15","42.6","26.7","16","12.5","17","12.4","44.5","44.8","18","10.3","15.8","19","32.3","19.2","20","21","28.8","9.6","22","45.0","23","30.8","16.7","16.3","24","25","32.4","26","9.4","27","33.7","18.5","21.9","28","30.2","31.0","16.4","29","34.4","41.2","2.9","30","38.4","6.6","31","4.4","17.0","32","26.4","33","6.1","34","38.8","17.7","35","36","38.1","11.5","14.9","37","14.3","18.9","38","13.0","39","27.8","33.8","3.1","40","41","28.9","42","28.5","38.0","34.0","1.5","43","15.1","44","31.2","120.0","14.4","45","149.8","7.5","46","47","38.6","48","49","25.2","50","19.8","51","5.9","6.7","52","4.2","53","1.6","54","55","20.0","56","39.8","18.1","57","35.6","58","10.5","14.1","59","8.2","60","140.8","12.6","61","62","17.6","63","64","1.1","65","20.9","66","67","68","2.1","69","123.9","27.1","70","25.5","37.4","71","72","73","74","75","76","27.9","7.0","77","78","79","80","81","82","83","84","1.4","85","86","87","88","89","90","91","92","93","109.0","94",235.7,"97","98","99","100","101","102","103","104","105","106","107","108",223.8,"111","112","113","114","115","116",215.5,"119","120","121","122","123","124","125","126","127","128",206.7,"131","132","133","134","135","136","137",201,"140","141","142","143","144","145","146",194.6,"149","150","151","152","153","154","155","156","157","158",183.3,"169","170","171","172","173","174","175","176","177","178","179","180","181","182","183","184",169.6,"187","188","189","190",168.1,167,"195",165.5,"198","199","200","201","202","203","204","205","206","207","208","209","210","212",160.5,"215","216","217","218","219","220","221","222","223","224","225","226","227","228","229","230","231",153.3,"234","235","236",150.8,"239",149.9,"242","243","244","245","246","247","248","249","250","251","252","253","254","255","256","257","258","259","260","261","262","263","264","265","266",139.7,"269","270","271","272","273","274",137,"277","278","279","280","281","282","283","284","285","286","287","288","289","290","291","292","293","294","295","296","300",130.2,"303","304","305","306","307","308",128.4,"311","312","313",125.9,"316","317",124.9,"320","321","Wuyi University","322","323","324","325","326","327","328","329","330","331",120.9,120.8,"Taizhou University","336","337","338",119.9,119.7,"343","344","345","346","347","348","349","350","351","352","353",115.4,"356","357","358","359","360","361","362","363","364",112.6,"367","368","369","370",111,"373","374","375","376","377",109.4,"380","381","382","383",107.6,"386","387",107.1,"390","391","392","393","394","395","396","400","401","402",104.7,"405","406","407","408","409","410","411","412","413","414","415",101.2,101.1,100.9,"422",100.3,"425","426","427","428","429",99,"432","433","434","435","436","437",97.6,"440","441","442","443",96.5,"446","447","448",95.8,"451",95.2,"454","455","456",94.8,"459","460",94.3,"463","464",93.6,"472","473",92.3,"476",91.7,"479","480","481","482","483","484",90.7,90.6,"489","490",90.2,"493","494","495",89.3,"503","504","505","506","507",87.4,"510","511","512",86.8,"515","516","517",86.2,"520","521",85.8,"524","525","526","527",84.6,"530","531","532","537",82.8,"540","541","542","543","544","545","546","547","548","549","550","551","552","553","554",78.1,"557","558","559","560","561","562","563","564","565","566","567","568","569","570","571","572","573","574","575","576","577","578","579","580","581","582",4,"2025-04-15T00:00:00+08:00","logo\u002Fannual\u002Fbcur\u002F2025.png","软科中国大学排名于2015年首次发布,多年来以专业、客观、透明的优势赢得了高等教育领域内外的广泛关注和认可,已经成为具有重要社会影响力和权威参考价值的中国大学排名领先品牌。软科中国大学排名以服务中国高等教育发展和进步为导向,采用数百项指标变量对中国大学进行全方位、分类别、监测式评价,向学生、家长和全社会提供及时、可靠、丰富的中国高校可比信息。",2024,2023,2022,15,2020,2019,2018,2017,2016,2015]
#构建映射字典(将所有值转为字符串,确保匹配一致性)
mapping = {}
for key, value in zip(keyset, valueset):
mapping[key] = str(value)
rank_match = re.findall(r"ranking:(.*?),rankChange:", page_text)
names = re.findall(r"univNameCn:(.*?),univNameEn:", page_text)
prov_match = re.findall(r"province:(.*?),score:", page_text)
cate_match = re.findall(r"univCategory:(.*?),province:", page_text)
score_match = re.findall(r"score:(.*?),ranking:", page_text)
def transform(a):
trans = a.strip().strip('"') #去除引号和空格
return mapping.get(trans, a) #未匹配到则保留原始值
rankings = [transform(i) for i in rank_match]
provinces = [transform(i) for i in prov_match]
categories = [transform(i) for i in cate_match]
scores = [transform(i) for i in score_match]
college_info = []
for rank, name, prov, cate, score in zip(rankings, names, provinces, categories, scores):
college_info.append({
"排名": rank,
"学校": name,
"省市": prov,
"类型": cate,
"总分": score
})
save_data = (rank, name, prov, cate, score)
save_to_db(save_data)
#打印结果
print(f"{'排名':<5}{'学校':<25}{'省市':<10}{'类型':<8}{'总分':<8}")
print("-" * 65)
for info in college_info:
print(f"{info['排名']:<5}{info['学校']:<25}{info['省市']:<10}{info['类型']:<8}{info['总分']:<8}")
show_db_data()
3.2结果
部分院校信息


存储在数据库的部分信息:

3.3心得体会
刚开始,因为直接提取编码字符串后未做映射,导致存储的全是 “xY”“aB” 这类无效数据。后来通过分析网页的结构,发现可以构建键值对(将编码键与真实值一一对应)。这个过程让我意识到,爬取前先分析数据结构(如查看返回的payload.js文件)、识别编码规律,能避免走大量弯路 —— 尤其是当接口数据不直接展示真实内容时,“找到编码与真实值的映射关系” 。
这次实验使我对复杂数据的爬取和解析有了更深入的理解和掌握。通过浏览器的F12调试工具,能够准确地分析网站的发包情况和获取数据的API,这是成功提取院校信息的关键步骤,同时我对正则表达式的理解更加深刻。
Gitee文件夹链接
https://gitee.com/chen-jiaxin_fzu/2025_crawl_project/blob/master/作业2/3.py

浙公网安备 33010602011771号