AcCoders 10692:【2022NOIP联测10 10月17日】交换(swap) 题解
考虑把一次交换产生的贡献记录在交换的两个数字中较小的那个数字上。则构造一个好的序列的过程可以看成是:按照从小到大的顺序枚举每个数,每次选择将这个数放在序列的左边或右边。
不难发现,每次放到左边或右边需要移动的次数是初始序列中左边或右边比这个数大的数的个数,与其它数选择放在左边还是右边无关。
直接用树状数组计算即可,时间复杂度 \(𝑂(𝑛 \log 𝑛)\)。
//10692 Problem D:【2022NOIP联测10 10月17日】交换(swap)
#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;
#define int long long
const int MAXN=3e5+5;
int n,a[MAXN],c[MAXN];
vector<int> bin[MAXN];
#define lowbit(x) ((x)&-(x))
void add(int x,int k)
{
for(int i=x;i<=n;i+=lowbit(i))
c[i]+=k;
return;
}
int sum(int x)
{
int res=0;
for(int i=x;i;i-=lowbit(i))
res+=c[i];
return res;
}
signed main()
{
int m,x,y,ans=0;
scanf("%lld",&n);
m=n;
for(int i=1;i<=n;i++)
{
scanf("%lld",a+i);
add(i,1);
bin[a[i]].push_back(i);
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<(int)bin[i].size();j++)
{
x=sum(bin[i][j]-1);
y=m-x-1;
ans+=min(x,y-(int)bin[i].size()+j+1);
add(bin[i][j],-1);
m--;
}
}
printf("%lld\n",ans);
return 0;
}
/*
* AcCoders-2022NOIPA层联测10 10月17日
* http://www.accoders.com/problem.php?cid=4207&pid=3
* C++23 -O0
* 2022.10.17
*/

浙公网安备 33010602011771号