联邦学习(Federated learning)


1.communication-efficient algorithms
parallel gradient descent


Federated Averaging Algorithm


比较

(epoch相当于计算量)
结论:FedAvg减少了通信量,增加了计算量
2.defense against privacy leakage
用梯度可以反推数据信息

加噪音之后,收敛速度和准确度会下降
工业界可能不允许
3.adversial robustness
叛徒可能会发错误节点和信息发送服务器

作者上传的课件:链接:https://pan.baidu.com/s/14QoIu4h6skC-11xL9wcOxg
提取码:zb26
浙公网安备 33010602011771号