UVA-10806 Dijkstra, Dijkstra. (最小费用流,网络流建模)
题目大意:给一张带权简单图,找出一条经过起点s和终点t的最小回路。
题目分析:建立网络,以s为源点,t为汇点,另每条边的容量为1,单位费用为边权值。求最小费用流,增广两次后的最小费用便是答案。
代码如下:
# include<iostream>
# include<cstdio>
# include<cmath>
# include<string>
# include<vector>
# include<list>
# include<set>
# include<map>
# include<queue>
# include<cstring>
# include<algorithm>
using namespace std;
# define LL long long
# define REP(i,s,n) for(int i=s;i<n;++i)
# define CL(a,b) memset(a,b,sizeof(a))
# define CLL(a,b,n) fill(a,a+n,b)
const double inf=1e30;
const int INF=1<<30;
const int N=105;
struct Edge
{
int fr,to,cap,flow,cost;
Edge(int _fr,int _to,int _cap,int _flow,int _cost):fr(_fr),to(_to),cap(_cap),flow(_flow),cost(_cost){}
};
vector<Edge>edges;
vector<int>G[N];
int p[N],a[N],d[N],inq[N];
void init(int n)
{
edges.clear();
REP(i,0,n) G[i].clear();
}
void addEdge(int u,int v,int cost)
{
edges.push_back(Edge(u,v,1,0,cost));
edges.push_back(Edge(v,u,0,0,-cost));
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
bool BellmanFord(int s,int t,int &flow,int &cost)
{
CL(inq,0);
CLL(d,INF,t+1);
d[s]=0,inq[s]=1,p[s]=0,a[s]=INF;
queue<int>q;
q.push(s);
while(!q.empty()){
int u=q.front();
q.pop();
inq[u]=0;
REP(i,0,G[u].size()){
Edge &e=edges[G[u][i]];
if(d[e.to]>d[u]+e.cost&&e.cap>e.flow){
d[e.to]=d[u]+e.cost;
p[e.to]=G[u][i];
a[e.to]=min(a[u],e.cap-e.flow);
if(!inq[e.to]){
inq[e.to]=1;
q.push(e.to);
}
}
}
}
if(d[t]==INF) return false;
flow+=a[t];
cost+=a[t]*d[t];
for(int x=t;x!=s;x=edges[p[x]].fr){
edges[p[x]].flow+=a[t];
edges[p[x]^1].flow-=a[t];
}
return true;
}
void solve(int s,int t)
{
int flow=0,cost=0;
if(!BellmanFord(s,t,flow,cost)) printf("Back to jail\n");
else{
if(BellmanFord(s,t,flow,cost)) printf("%d\n",cost);
else printf("Back to jail\n");
}
}
int main()
{
int s,t,n,m,a,b,c;
while(scanf("%d",&n)&&n)
{
s=0,t=n-1;
init(n);
scanf("%d",&m);
while(m--)
{
scanf("%d%d%d",&a,&b,&c);
addEdge(a-1,b-1,c);
addEdge(b-1,a-1,c);
}
solve(s,t);
}
return 0;
}


浙公网安备 33010602011771号