UVA-11478 Halum (差分约束系统)
题目大意:一张n个节点的有向带边权图,每次操作能任选一个节点v个一个整数d,使以v为终点的边权值都减少d,以v为起点的边权值都增加d,求若干次操作后的最小边权值的非负最大值。
题目分析:用sum[i]表示作用在节点i上的所有d之和,则对于边a->b,操作若干次后的权值为w(a,b)+sum[a]-sum[b],假设最小边权值的最大值为x,则有sum[b]-sum[a]≤w(a,b)-x。这样的所有m条边构成一个差分约束系统。二分枚举x,求解即可。
代码如下:
# include<iostream>
# include<cstdio>
# include<queue>
# include<cstring>
# include<algorithm>
using namespace std;
const int INF=1<<30;
struct Edge
{
int to,nxt,w;
};
Edge e[3500];
int cnt,n,head[3000],inq[505],vis[505],dist[505];
void add(int u,int v,int w)
{
e[cnt].to=v;
e[cnt].w=w;
e[cnt].nxt=head[u];
head[u]=cnt++;
}
bool bellman_ford(int M)
{
queue<int>q;
for(int i=1;i<=n;++i){
vis[i]=inq[i]=1;
dist[i]=0;
q.push(i);
}
while(!q.empty())
{
int u=q.front();
q.pop();
inq[u]=0;
for(int i=head[u];i!=-1;i=e[i].nxt){
int v=e[i].to;
if(dist[v]>dist[u]+e[i].w-M){
dist[v]=dist[u]+e[i].w-M;
if(!inq[v]){
inq[v]=1;
q.push(v);
if(++vis[v]>n-1)
return true;
}
}
}
}
return false;
}
int main()
{
int m,a,b,c;
while(~scanf("%d%d",&n,&m))
{
cnt=0;
memset(head,-1,sizeof(head));
int maxn=0;
while(m--)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
maxn=max(maxn,c);
}
if(bellman_ford(1))
printf("No Solution\n");
else if(!bellman_ford(maxn+1))
printf("Infinite\n");
else{
int l=1,r=maxn;
while(l<r){
int x=l+(r-l+1)/2;
if(bellman_ford(x))
r=x-1;
else
l=x;
}
printf("%d\n",l);
}
}
return 0;
}


浙公网安备 33010602011771号