CNN实战

使用VGG模型进行猫狗大战

 1 import numpy as np
 2 import matplotlib.pyplot as plt
 3 import os
 4 import torch
 5 import torch.nn as nn
 6 import torchvision
 7 from torchvision import models,transforms,datasets
 8 import time
 9 import json
10 
11 
12 # 判断是否存在GPU设备
13 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
14 print('Using gpu: %s ' % torch.cuda.is_available())

 

 

 1.下载数据

! wget https://static.leiphone.com/cat_dog.rar
! unrar x cat_dog.rar

 使用Kaggle的猫狗大战竞赛提供的数据集下载链接 https://static.leiphone.com/cat_dog.rar

2.数据处理

datasets 是 torchvision 中的一个包,可以用做加载图像数据。它可以以多线程(multi-thread)的形式从硬盘中读取数据,使用 mini-batch 的形式,在网络训练中向 GPU 输送。在使用CNN处理图像时,需要进行预处理。图片将被整理成  的大小,同时还将进行归一化处理。torchvision 支持对输入数据进行一些复杂的预处理/变换 (normalization, cropping, flipping, jittering 等)。

 1 normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
 2 
 3 vgg_format = transforms.Compose([
 4                 transforms.CenterCrop(224),
 5                 transforms.ToTensor(),
 6                 normalize,
 7             ])
 8 
 9 #训练数据、验证数据、以及测试数据,分别在三个目录train/val/test
10 import shutil
11 data_dir = './cat_dog'
12 os.mkdir("./cat_dog/train/cat")
13 os.mkdir("./cat_dog/train/dog")
14 os.mkdir("./cat_dog/val/cat")
15 os.mkdir("./cat_dog/val/dog")
16 for i in range(10000):
17   cat_name = './cat_dog/train/cat_'+str(i)+'.jpg';
18   dog_name = './cat_dog/train/dog_'+str(i)+'.jpg';
19   shutil.move(cat_name,"./cat_dog/train/cat")
20   shutil.move(dog_name,"./cat_dog/train/dog")
21 
22 for i in range(1000):
23   cat_name = './cat_dog/val/cat_'+str(i)+'.jpg';
24   dog_name = './cat_dog/val/dog_'+str(i)+'.jpg';
25   shutil.move(cat_name,"./cat_dog/val/cat")
26   shutil.move(dog_name,"./cat_dog/val/dog")
27 #读取测试问题的数据集
28 
29 test_path = "./cat_dog/test/dogs_cats"
30 os.mkdir(test_path)
31 #移动到test_path
32 for i in range(2000):
33   name = './cat_dog/test/'+str(i)+'.jpg' 
34   shutil.move(name,"./cat_dog/test/dogs_cats")
35 
36 file_list=os.listdir("./cat_dog/test/dogs_cats")
37 #将图片名补全,防止读取顺序不对
38 for file in file_list:
39   #填充0后名字总共10位,包括扩展名
40   filename = file.zfill(10)
41   new_name =''.join(filename)
42   os.rename(test_path+'/'+file,test_path+'/'+new_name)
43 #将所有图片数据放到dsets内
44 dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format)
45          for x in ['train','val','test']}
46 dset_sizes = {x: len(dsets[x]) for x in ['train','val','test']}
47 dset_classes = dsets['train'].classes
48 loader_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6)
49 loader_valid = torch.utils.data.DataLoader(dsets['val'], batch_size=5, shuffle=False, num_workers=6)
50 #加入测试集
51 loader_test = torch.utils.data.DataLoader(dsets['test'], batch_size=5,shuffle=False, num_workers=6)
52 
53 '''
54 valid 数据一共有2000张图,每个batch是5张,因此,下面进行遍历一共会输出到 400
55 同时,把第一个 batch 保存到 inputs_try, labels_try,分别查看
56 '''
57 count = 1
58 for data in loader_test:
59     print(count, end=',')
60     if count%50==0: 
61       print()
62     if count == 1:
63         inputs_try,labels_try = data
64     count +=1
65 
66 print(labels_try)
67 print(inputs_try.shape)

 

 

 

 1 # 显示图片的小程序
 2 def imshow(inp, title=None):
 3     inp = inp.numpy().transpose((1, 2, 0))
 4     mean = np.array([0.485, 0.456, 0.406])
 5     std = np.array([0.229, 0.224, 0.225])
 6     inp = np.clip(std * inp + mean, 0,1)
 7     plt.imshow(inp)
 8     if title is not None:
 9         plt.title(title)
10     plt.pause(0.001)  # pause a bit so that plots are updated
1 # 显示 labels_try 的5张图片,即valid里第一个batch的5张图片
2 out = torchvision.utils.make_grid(inputs_try)
3 imshow(out, title=[dset_classes[x] for x in labels_try])

 

 

 3.创建VGG Model

 torchvision中集成了很多在 ImageNet (120万张训练数据) 上预训练好的通用的CNN模型,可以直接下载使用。

在本课程中,我们直接使用预训练好的 VGG 模型。同时,为了展示 VGG 模型对本数据的预测结果,还下载了 ImageNet 1000 个类的 JSON 文件。

在这部分代码中,对输入的5个图片利用VGG模型进行预测,同时,使用softmax对结果进行处理,随后展示了识别结果。可以看到,识别结果是比较非常准确的。

1 !wget https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json
 1 model_vgg = models.vgg16(pretrained=True)
 2 
 3 with open('./imagenet_class_index.json') as f:
 4     class_dict = json.load(f)
 5 dic_imagenet = [class_dict[str(i)][1] for i in range(len(class_dict))]
 6 
 7 inputs_try , labels_try = inputs_try.to(device), labels_try.to(device)
 8 model_vgg = model_vgg.to(device)
 9 
10 outputs_try = model_vgg(inputs_try)
11 
12 print(outputs_try)
13 print(outputs_try.shape)
14 
15 '''
16 可以看到结果为5行,1000列的数据,每一列代表对每一种目标识别的结果。
17 但是我也可以观察到,结果非常奇葩,有负数,有正数,
18 为了将VGG网络输出的结果转化为对每一类的预测概率,我们把结果输入到 Softmax 函数
19 '''
20 m_softm = nn.Softmax(dim=1)
21 probs = m_softm(outputs_try)
22 vals_try,pred_try = torch.max(probs,dim=1)
23 
24 print( 'prob sum: ', torch.sum(probs,1))
25 print( 'vals_try: ', vals_try)
26 print( 'pred_try: ', pred_try)
27 
28 print([dic_imagenet[i] for i in pred_try.data])
29 imshow(torchvision.utils.make_grid(inputs_try.data.cpu()), 
30        title=[dset_classes[x] for x in labels_try.data.cpu()])

 

 

 4.修改最后一层,冻结前面层的参数

卷积层(CONV)是发现图像中局部的 pattern
全连接层(FC)是在全局上建立特征的关联
池化(Pool)是给图像降维以提高特征的 invariance
我们的目标是使用预训练好的模型,因此,需要把最后的 nn.Linear 层由1000类,替换为2类。为了在训练中冻结前面层的参数,需要设置 required_grad=False。这样,反向传播训练梯度时,前面层的权重就不会自动更新了。训练中,只会更新最后一层的参数。

 1 print(model_vgg)
 2 
 3 model_vgg_new = model_vgg;
 4 
 5 for param in model_vgg_new.parameters():
 6     param.requires_grad = False
 7 model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
 8 model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)
 9 
10 model_vgg_new = model_vgg_new.to(device)
11 
12 print(model_vgg_new.classifier)

5.训练并测试全连接层

  • 创建损失函数和优化器

 

 

 

  •  训练模型
 1 '''
 2 第一步:创建损失函数和优化器
 3 '''
 4 criterion = nn.NLLLoss()
 5 # 学习率
 6 lr = 0.001
 7 # 随机梯度下降
 8 optimizer_vgg = torch.optim.Adam(model_vgg_new.classifier[6].parameters(),lr = lr)
 9 
10 '''
11 第二步:训练模型
12 '''
13 def train_model(model,dataloader,size,epochs=1,optimizer=None):
14     model.train()
15     for epoch in range(epochs):
16         running_loss = 0.0
17         running_corrects = 0
18         count = 0
19         for inputs,classes in dataloader:
20             inputs = inputs.to(device)
21             classes = classes.to(device)
22             outputs = model(inputs)
23             loss = criterion(outputs,classes)           
24             optimizer = optimizer
25             optimizer.zero_grad()
26             loss.backward()
27             optimizer.step()
28             _,preds = torch.max(outputs.data,1)
29             # statistics
30             running_loss += loss.data.item()
31             running_corrects += torch.sum(preds == classes.data)
32             count += len(inputs)
33             print('Training: No. ', count, ' process ... total: ', size)
34         epoch_loss = running_loss / size
35         epoch_acc = running_corrects.data.item() / size
36         print('Loss: {:.4f} Acc: {:.4f}'.format(
37                      epoch_loss, epoch_acc))
38 # 模型训练
39 train_model(model_vgg_new,loader_train,size=dset_sizes['train'], epochs=1, 
40             optimizer=optimizer_vgg)
View Code
  •  

     

  • 测试模型
 1 def test_model(model,dataloader,size):
 2     model.eval()
 3     predictions = np.zeros(size)
 4     all_classes = np.zeros(size)
 5     all_proba = np.zeros((size,2))
 6     i = 0
 7     running_loss = 0.0
 8     running_corrects = 0
 9     for inputs,classes in dataloader:
10         inputs = inputs.to(device)
11         classes = classes.to(device)
12         outputs = model(inputs)
13         loss = criterion(outputs,classes)           
14         _,preds = torch.max(outputs.data,1)
15         # statistics
16         running_loss += loss.data.item()
17         running_corrects += torch.sum(preds == classes.data)
18         predictions[i:i+len(classes)] = preds.to('cpu').numpy()
19         all_classes[i:i+len(classes)] = classes.to('cpu').numpy()
20         all_proba[i:i+len(classes),:] = outputs.data.to('cpu').numpy()
21         i += len(classes)
22         print('Testing: No. ', i, ' process ... total: ', size)        
23     epoch_loss = running_loss / size
24     epoch_acc = running_corrects.data.item() / size
25     print('Loss: {:.4f} Acc: {:.4f}'.format(
26                      epoch_loss, epoch_acc))
27     return predictions, all_proba, all_classes
28   
29 predictions, all_proba, all_classes = test_model(model_vgg_new,loader_valid,size=dset_sizes['val'])
View Code

 

 6.可视化模型测试结果(主观分析)

随机查看一些预测正确的图片
随机查看一些预测错误的图片
预测正确,同时具有较大的probability的图片
预测错误,同时具有较大的probability的图片
最不确定的图片,比如说预测概率接近0.5的图片

 1 def result_model(model,dataloader,size):
 2     model.eval()
 3     predictions=np.zeros((size,2),dtype='int')
 4     i = 0
 5     for inputs,classes in dataloader:
 6         inputs = inputs.to(device)
 7         outputs = model(inputs)         
 8         #_表示的就是具体的value,preds表示下标,1表示在行上操作取最大值,返回类别
 9         _,preds = torch.max(outputs.data,1)
10         predictions[i:i+len(classes),1] = preds.to('cpu').numpy();
11         predictions[i:i+len(classes),0] = np.linspace(i,i+len(classes)-1,len(classes))
12         #可在过程中看到部分结果
13         print(predictions[i:i+len(classes),:])
14         i += len(classes)
15         print('creating: No. ', i, ' process ... total: ', size)        
16     return predictions
17 
18 result = result_model(model_vgg_new,loader_test,size=dset_sizes['test'])
19 
20 np.savetxt("./cat_dog/cdresult.csv",result,fmt="%d",delimiter=",")

 

 7.结论

 

使用Adam

可以提高准确率

posted on 2021-10-24 13:56  醒星0  阅读(55)  评论(0)    收藏  举报