1646: [Usaco2007 Open]Catch That Cow 抓住那只牛

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 829  Solved: 393
[Submit][Status][Discuss]

Description

Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 <= N <= 100,000) on a number line and the cow is at a point K (0 <= K <= 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting. * Walking: FJ can move from any point X to the points X-1 or X+1 in a single minute * Teleporting: FJ can move from any point X to the point 2*X in a single minute. If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?

农夫约翰被通知，他的一只奶牛逃逸了！所以他决定，马上幽发，尽快把那只奶牛抓回来．
他们都站在数轴上．约翰在N(O≤N≤100000)处，奶牛在K(O≤K≤100000)处．约翰有

那么，约翰需要多少时间抓住那只牛呢？

Input

* Line 1: Two space-separated integers: N and K

仅有两个整数N和K.

Output

* Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.

最短的时间．

Sample Input

5 17
Farmer John starts at point 5 and the fugitive cow is at point 17.

Sample Output

4

OUTPUT DETAILS:

The fastest way for Farmer John to reach the fugitive cow is to
move along the following path: 5-10-9-18-17, which takes 4 minutes.

Source

Silver

---------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
int n,m,maxn;
const int nmax=100005;
int q[nmax],v[nmax],d[nmax];
int main(){
scanf("%d%d",&n,&m);
maxn=max(n,m)+1;
memset(d,0x7f,sizeof(d));
memset(v,0,sizeof(v));
int l=0;int r=1;
q[0]=n;
v[n]=1;
d[n]=0;
while(l!=r){
int tmp=q[l];
l++;
if(l==nmax) l=0;
int dis=d[tmp]+1;
if(tmp-1>=0&&d[tmp-1]>dis){
d[tmp-1]=dis;
if(tmp-1==m)
break;
if(!v[tmp-1]){
v[tmp-1]=1;
q[r++]=tmp-1;
if(r==100000)
r=0;
}
}
if(tmp+1<=maxn&&d[tmp+1]>dis){
d[tmp+1]=dis;
if(tmp+1==m)
break;
if(!v[tmp+1]){
v[tmp+1]=1;
q[r++]=tmp+1;
if(r==100000)
r=0;
}
}
if(tmp*2<=maxn&&d[tmp*2]>dis){
d[tmp*2]=dis;
if(tmp*2==m)
break;
if(!v[tmp*2]){
v[tmp*2]=1;
q[r++]=tmp*2;
if(r==100000)
r=0;
}
}
}
printf("%d\n",d[m]);
return 0;
}

-----------------------------------------------------------------------------------