安庆

导航

记录linux tty的一次软锁排查2

在复现tty的死锁问题的时候,文洋兄使用了如下的方式:

#include   <fcntl.h>
#include   <unistd.h>
#include   <stdio.h>

#define TIOCVHANGUP 0x5437
int   main(int argc,char* argv[])
{
        int   fd;
        if(argc < 2)
        {
          printf("error,you should input tty as a parameter\r\n");
          return 1;
        }
        fd = open(argv[1],   O_WRONLY   |   O_NOCTTY);

          if(fd<0)
          {
                return 1;
          }

        write(fd,   "test tty\n ", 20);
        ioctl(fd, TIOCVHANGUP, 0);
        //sleep(1);
        close(fd);
        return   0;
}

编译成gcc -g -o main.o main.c ,然后使用脚本呼叫:

#!/bin/bash
while [ 1 ]
do
  ./main.o /dev/tty4
done

之所以使用脚本而不是在c中while处理,是因为在进程exit的时候,会有些tty的处理,我们希望尽可能地覆盖测试,所以甚至都没有加sleep来延时。

结果复现出来下面的软锁故障,堆栈如下:

[517571.855382] INFO: task systemd:1 blocked for more than 120 seconds.
[517571.856127] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[517571.856846] systemd         D ffff881fffc347c0     0     1      0 0x00000000
[517571.856852]  ffff881fd35c7b50 0000000000000086 ffff881fd35c7fd8 ffff881fd35c7fd8
[517571.856859]  ffff881fd35c7fd8 00000000000147c0 ffff881fd313c500 ffff883f5ee2ac80
[517571.856863]  ffff883f5ee2ac84 ffff883fd1630000 00000000ffffffff ffff883f5ee2ac88
[517571.856867] Call Trace:
[517571.856880]  [<ffffffff8163f959>] schedule_preempt_disabled+0x29/0x70
[517571.856883]  [<ffffffff8163d415>] __mutex_lock_slowpath+0xc5/0x1c0
[517571.856888]  [<ffffffff8163c87f>] mutex_lock+0x1f/0x2f
[517571.856890]  [<ffffffff81640df8>] tty_lock_nested.isra.0+0x38/0x90
[517571.856892]  [<ffffffff81640e5e>] tty_lock+0xe/0x10
[517571.856899]  [<ffffffff813b204c>] tty_open+0xcc/0x620
[517571.856906]  [<ffffffff811e5721>] chrdev_open+0xa1/0x1e0
[517571.856912]  [<ffffffff811de657>] do_dentry_open+0x1a7/0x2e0
[517571.856916]  [<ffffffff811e5680>] ? cdev_put+0x30/0x30
[517571.856918]  [<ffffffff811de889>] vfs_open+0x39/0x70
[517571.856922]  [<ffffffff811ede7d>] do_last+0x1ed/0x1270
[517571.856925]  [<ffffffff811f0be2>] path_openat+0xc2/0x490
[517571.856930]  [<ffffffff810afb68>] ? __wake_up_common+0x58/0x90
[517571.856935]  [<ffffffff811f23ab>] do_filp_open+0x4b/0xb0
[517571.856941]  [<ffffffff811fef47>] ? __alloc_fd+0xa7/0x130
[517571.856945]  [<ffffffff811dfd53>] do_sys_open+0xf3/0x1f0
[517571.856949]  [<ffffffff811dfe6e>] SyS_open+0x1e/0x20
[517571.856955]  [<ffffffff81649909>] system_call_fastpath+0x16/0x1b

从堆栈看,显然又是在等锁超时了。反汇编找到这把锁是关键。

void __lockfunc tty_lock(struct tty_struct *tty)
{
    return tty_lock_nested(tty, TTY_MUTEX_NORMAL);
}
static void __lockfunc tty_lock_nested(struct tty_struct *tty,
                       unsigned int subclass)
{
    if (tty->magic != TTY_MAGIC) {
        pr_err("L Bad %p\n", tty);
        WARN_ON(1);
        return;
    }
    tty_kref_get(tty);
    mutex_lock_nested(&tty->legacy_mutex, subclass);--------------传入锁的指针
}

由于CONFIG_DEBUG_LOCK_ALLOC并没有配置,所以mutex_lock_nested就是mutex_lock。和堆栈是匹配的。

# define mutex_lock_nested(lock, subclass) mutex_lock(lock)

 

crash> dis -l tty_lock_nested
/usr/src/debug/kernel-3.10.0-327.22.2.el7/linux-3.10.0-327.22.2.el7.x86_64/drivers/tty/tty_mutex.c: 18
0xffffffff81640dc0 <tty_lock_nested>:   nopl   0x0(%rax,%rax,1) [FTRACE NOP]
0xffffffff81640dc5 <tty_lock_nested+5>: push   %rbp
0xffffffff81640dc6 <tty_lock_nested+6>: mov    %rsp,%rbp
0xffffffff81640dc9 <tty_lock_nested+9>: push   %rbx
/usr/src/debug/kernel-3.10.0-327.22.2.el7/linux-3.10.0-327.22.2.el7.x86_64/drivers/tty/tty_mutex.c: 21
0xffffffff81640dca <tty_lock_nested+10>:        cmpl   $0x5401,(%rdi)
/usr/src/debug/kernel-3.10.0-327.22.2.el7/linux-3.10.0-327.22.2.el7.x86_64/drivers/tty/tty_mutex.c: 18
0xffffffff81640dd0 <tty_lock_nested+16>:        mov    %rdi,%rbx
/usr/src/debug/kernel-3.10.0-327.22.2.el7/linux-3.10.0-327.22.2.el7.x86_64/drivers/tty/tty_mutex.c: 21
0xffffffff81640dd3 <tty_lock_nested+19>:        jne    0xffffffff81640dfb <tty_lock_nested+59>
/usr/src/debug/kernel-3.10.0-327.22.2.el7/linux-3.10.0-327.22.2.el7.x86_64/include/linux/tty.h: 388
0xffffffff81640dd5 <tty_lock_nested+21>:        test   %rdi,%rdi
0xffffffff81640dd8 <tty_lock_nested+24>:        je     0xffffffff81640dec <tty_lock_nested+44>
/usr/src/debug/kernel-3.10.0-327.22.2.el7/linux-3.10.0-327.22.2.el7.x86_64/arch/x86/include/asm/atomic.h: 176
0xffffffff81640dda <tty_lock_nested+26>:        mov    $0x1,%eax
0xffffffff81640ddf <tty_lock_nested+31>:        lock xadd %eax,0x4(%rdi)
0xffffffff81640de4 <tty_lock_nested+36>:        add    $0x1,%eax
/usr/src/debug/kernel-3.10.0-327.22.2.el7/linux-3.10.0-327.22.2.el7.x86_64/include/linux/kref.h: 47
0xffffffff81640de7 <tty_lock_nested+39>:        cmp    $0x1,%eax
0xffffffff81640dea <tty_lock_nested+42>:        jle    0xffffffff81640e1f <tty_lock_nested+95>
/usr/src/debug/kernel-3.10.0-327.22.2.el7/linux-3.10.0-327.22.2.el7.x86_64/drivers/tty/tty_mutex.c: 27
0xffffffff81640dec <tty_lock_nested+44>:        lea    0x80(%rbx),%rdi------------------传入的参数是一把锁的地址,即&tty->legacy_mutex,rbx就是tty的指针了。
0xffffffff81640df3 <tty_lock_nested+51>: callq 0xffffffff8163c860 <mutex_lock>--------------------调用mutex_lock

 

crash> dis -l mutex_lock
/usr/src/debug/kernel-3.10.0-327.22.2.el7/linux-3.10.0-327.22.2.el7.x86_64/kernel/mutex.c: 103
0xffffffff8163c860 <mutex_lock>:        nopl   0x0(%rax,%rax,1) [FTRACE NOP]
0xffffffff8163c865 <mutex_lock+5>:      push   %rbp
0xffffffff8163c866 <mutex_lock+6>:      mov    %rsp,%rbp
0xffffffff8163c869 <mutex_lock+9>:      push   %rbx--------------------------------------------------rbx压栈,所以rbp后面就是rbx的值

所以我们能够通过堆栈分析出tty的指针来,rbx的压栈的位置是在rbp之后。

    ffff881fd35c7bc0: ffff881fd35c7bd8 ffffffff8163c87f 
 #3 [ffff881fd35c7bc8] mutex_lock at ffffffff8163c87f
    ffff881fd35c7bd0: ffff883f5ee2ac00 ffff881fd35c7bf0 -----------------------ffff883f5ee2ac00就是rbx的值,也就是tty指针
    ffff881fd35c7be0: ffffffff81640df8 
 #4 [ffff881fd35c7be0] tty_lock_nested at ffffffff81640df8
    ffff881fd35c7be8: ffff88211f6a3200 ffff881fd35c7c00 
    ffff881fd35c7bf8: ffffffff81640e5e 

现在,需要找到持有这把锁的owner是谁。

crash> struct tty_struct.legacy_mutex ffff883f5ee2ac00
  legacy_mutex = {
    count = {
      counter = -1
    }, 
    wait_lock = {
      {
        rlock = {
          raw_lock = {
            {
              head_tail = 524296, 
              tickets = {
                head = 8, 
                tail = 8
              }
            }
          }
        }
      }
    }, 
    wait_list = {
      next = 0xffff881fd35c7b70, 
      prev = 0xffff881fd35c7b70
    }, 
    owner = 0xffff880190f5c500, -----------------持有锁

查看对应的task:

crash> task 0xffff880190f5c500
PID: 5628   TASK: ffff880190f5c500  CPU: 47  COMMAND: "main.o"------------就是我们编译的测试命令

确认下是不是我们的tty4.

crash> struct tty_strt.name ffff883f5ee2ac00
  name = "tty4\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000"

确定无误后,看看进程打开的文件列表:

crash> files 5628
PID: 5628   TASK: ffff880190f5c500  CPU: 47  COMMAND: "main.o"
ROOT: /    CWD: /home/caq
 FD       FILE            DENTRY           INODE       TYPE PATH
  0 ffff881f0e31a600 ffff880dd37f8000 ffff8801713fcea0 CHR  /dev/pts/45
  1 ffff881f0e31a600 ffff880dd37f8000 ffff8801713fcea0 CHR  /dev/pts/45
  2 ffff881f0e31a600 ffff880dd37f8000 ffff8801713fcea0 CHR  /dev/pts/45
  3 ffff881a00324400 ffff883fd1010fc0 ffff883fd0b73820 CHR  /dev/tty4

查看对应的tty的属性:

crash> struct  file.private_data  ffff881a00324400
  private_data = 0xffff883f6101e840
crash> struct tty_file_private.tty 0xffff883f6101e840
  tty = 0xffff883f5ee2ac00
crash> struct tty_struct.disc_data 0xffff883f5ee2ac00----------------这个 0xffff883f5ee2ac00 也就是在前面反汇编找到的tty指针
 disc_data = 0xffff883f9a1d8c00 
crash
> struct n_tty_data.icanon 0xffff883f9a1d8c00 icanon = 1 '\001'

当然也可以使用tty来直接查看。

最后殊途同归,还是同一个问题,属性导致的。

我们继续来看到底有多少进程被阻塞了:

# grep mutex_lock -A 5 -B 5 caq_all_bt.txt |grep tty_open |wc -l
90

# grep mutex_lock -A 5 -B 5 caq_all_bt.txt |grep tty_open 
 #6 [ffff881fd35c7c08] tty_open at ffffffff813b204c-----------------只有1号进程阻塞在这
 #3 [ffff8820c222bc08] tty_open at ffffffff813b1ff7-----------------其余全部阻塞在这
 #3 [ffff882aaa9b3c08] tty_open at ffffffff813b1ff7
 #3 [ffff883f20ca7c08] tty_open at ffffffff813b1ff7
 #3 [ffff882098d2bc08] tty_open at ffffffff813b1ff7
 #3 [ffff88147ff87c08] tty_open at ffffffff813b1ff7
 #3 [ffff8820ff4cbc08] tty_open at ffffffff813b1ff7
 #3 [ffff88106e5c7c08] tty_open at ffffffff813b1ff7
 #3 [ffff880192813c08] tty_open at ffffffff813b1ff7
 #3 [ffff880164ccbc08] tty_open at ffffffff813b1ff7
 #3 [ffff882093c13c08] tty_open at ffffffff813b1ff7
 #3 [ffff8814221b7c08] tty_open at ffffffff813b1ff7
 #3 [ffff883f3c74fc08] tty_open at ffffffff813b1ff7
 #3 [ffff88136e433c08] tty_open at ffffffff813b1ff7
 #3 [ffff882141f37c08] tty_open at ffffffff813b1ff7
 #3 [ffff8820db4ebc08] tty_open at ffffffff813b1ff7
 #3 [ffff88149471fc08] tty_open at ffffffff813b1ff7
 #3 [ffff8801a4417c08] tty_open at ffffffff813b1ff7
 #3 [ffff883f0acd3c08] tty_open at ffffffff813b1ff7
 #3 [ffff883ebce9fc08] tty_open at ffffffff813b1ff7
 #3 [ffff88208bfd3c08] tty_open at ffffffff813b1ff7
 #3 [ffff882087d0bc08] tty_open at ffffffff813b1ff7
 #3 [ffff8820d556bc08] tty_open at ffffffff813b1ff7
 #3 [ffff8820c235bc08] tty_open at ffffffff813b1ff7
 #3 [ffff8820e7ce3c08] tty_open at ffffffff813b1ff7
 #3 [ffff88210c25fc08] tty_open at ffffffff813b1ff7
 #3 [ffff8820ebe2fc08] tty_open at ffffffff813b1ff7
 #3 [ffff8820e82c7c08] tty_open at ffffffff813b1ff7
 #3 [ffff88212af2fc08] tty_open at ffffffff813b1ff7
 #3 [ffff881ad4ef7c08] tty_open at ffffffff813b1ff7
 #3 [ffff883f1a8afc08] tty_open at ffffffff813b1ff7
 #3 [ffff88146efb3c08] tty_open at ffffffff813b1ff7
 #3 [ffff8801c557fc08] tty_open at ffffffff813b1ff7
 #3 [ffff88044e66fc08] tty_open at ffffffff813b1ff7
 #3 [ffff8801664dbc08] tty_open at ffffffff813b1ff7
 #3 [ffff8801a1fefc08] tty_open at ffffffff813b1ff7
 #3 [ffff8801850c7c08] tty_open at ffffffff813b1ff7
 #3 [ffff8801c6563c08] tty_open at ffffffff813b1ff7
 #3 [ffff8801751dfc08] tty_open at ffffffff813b1ff7
 #3 [ffff8801272fbc08] tty_open at ffffffff813b1ff7
 #3 [ffff880173073c08] tty_open at ffffffff813b1ff7
 #3 [ffff880179ccbc08] tty_open at ffffffff813b1ff7
 #3 [ffff8813895f7c08] tty_open at ffffffff813b1ff7
 #3 [ffff88152025fc08] tty_open at ffffffff813b1ff7
 #3 [ffff88019e403c08] tty_open at ffffffff813b1ff7
 #3 [ffff8801504f3c08] tty_open at ffffffff813b1ff7
 #3 [ffff88017841fc08] tty_open at ffffffff813b1ff7
 #3 [ffff88018e80fc08] tty_open at ffffffff813b1ff7
 #3 [ffff881345b57c08] tty_open at ffffffff813b1ff7
 #3 [ffff881f2c0ffc08] tty_open at ffffffff813b1ff7
 #3 [ffff88049b78bc08] tty_open at ffffffff813b1ff7
 #3 [ffff8801aff13c08] tty_open at ffffffff813b1ff7
 #3 [ffff880186f77c08] tty_open at ffffffff813b1ff7
 #3 [ffff8814fd963c08] tty_open at ffffffff813b1ff7
 #3 [ffff8803d37dbc08] tty_open at ffffffff813b1ff7
 #3 [ffff8801cacfbc08] tty_open at ffffffff813b1ff7
 #3 [ffff8801d6937c08] tty_open at ffffffff813b1ff7
 #3 [ffff8805689d3c08] tty_open at ffffffff813b1ff7
 #3 [ffff883f8b9d7c08] tty_open at ffffffff813b1ff7
 #3 [ffff883f7d873c08] tty_open at ffffffff813b1ff7
 #3 [ffff8801fd47bc08] tty_open at ffffffff813b1ff7
 #3 [ffff881387ecfc08] tty_open at ffffffff813b1ff7
 #3 [ffff88145225fc08] tty_open at ffffffff813b1ff7
 #3 [ffff88055235bc08] tty_open at ffffffff813b1ff7
 #3 [ffff8803d2297c08] tty_open at ffffffff813b1ff7
 #3 [ffff881432223c08] tty_open at ffffffff813b1ff7
 #3 [ffff880d100cbc08] tty_open at ffffffff813b1ff7
 #3 [ffff88018e9e3c08] tty_open at ffffffff813b1ff7
 #3 [ffff8813879d7c08] tty_open at ffffffff813b1ff7
 #3 [ffff88021a327c08] tty_open at ffffffff813b1ff7
 #3 [ffff88021747bc08] tty_open at ffffffff813b1ff7
 #3 [ffff88016bb43c08] tty_open at ffffffff813b1ff7
 #3 [ffff880152223c08] tty_open at ffffffff813b1ff7
 #3 [ffff8801acbcbc08] tty_open at ffffffff813b1ff7
 #3 [ffff88018a2dfc08] tty_open at ffffffff813b1ff7
 #3 [ffff88018821bc08] tty_open at ffffffff813b1ff7
 #3 [ffff883ea5b9bc08] tty_open at ffffffff813b1ff7
 #3 [ffff880242e8fc08] tty_open at ffffffff813b1ff7
 #3 [ffff88136ce7fc08] tty_open at ffffffff813b1ff7
 #3 [ffff880186217c08] tty_open at ffffffff813b1ff7
 #3 [ffff8801685b3c08] tty_open at ffffffff813b1ff7
 #3 [ffff883edb1bbc08] tty_open at ffffffff813b1ff7
 #3 [ffff883efc4dfc08] tty_open at ffffffff813b1ff7
 #3 [ffff8820ecaffc08] tty_open at ffffffff813b1ff7
 #3 [ffff883e77557c08] tty_open at ffffffff813b1ff7
 #3 [ffff8813dcbdfc08] tty_open at ffffffff813b1ff7
 #3 [ffff8801544dfc08] tty_open at ffffffff813b1ff7
 #3 [ffff8820d552fc08] tty_open at ffffffff813b1ff7
 #3 [ffff8801dab0fc08] tty_open at ffffffff813b1ff7
 #3 [ffff883fa1f83c08] tty_open at ffffffff813b1ff7

这90个中,只有一个是#6 [ffff881fd35c7c08] tty_open at ffffffff813b204c,其他都是阻塞在tty_open at ffffffff813b1ff7,根据反汇编的行号,说明89个进程在

mutex_lock(&tty_mutex);阻塞。这是一把大锁。

这89个进程阻塞的原因是1号进程拿到了tty_mutex这把大的互斥锁。

然后1号进程被阻塞在

if (tty) {
        tty_lock(tty);--------------------1号进程阻塞在这,即阻塞在tty->legacy_mutex 锁。
retval = tty_reopen(tty); if (retval < 0) { tty_unlock(tty); tty = ERR_PTR(retval); }

1号进程阻塞是因为5628进程,来看一下5628进程的堆栈:

 #0 [ffff883edb11fbd0] __schedule at ffffffff8163df9b
 #1 [ffff883edb11fc38] schedule at ffffffff8163e879
 #2 [ffff883edb11fc48] schedule_timeout at ffffffff8163c329
 #3 [ffff883edb11fcf8] ldsem_down_write at ffffffff8164061a
 #4 [ffff883edb11fd68] tty_ldisc_lock_pair_timeout at ffffffff81640cd8
 #5 [ffff883edb11fd98] tty_ldisc_hangup at ffffffff813b8dc4
 #6 [ffff883edb11fdc0] __tty_hangup at ffffffff813b0594
 #7 [ffff883edb11fe10] tty_ioctl at ffffffff813b2e55
 #8 [ffff883edb11feb8] do_vfs_ioctl at ffffffff811f4465
 #9 [ffff883edb11ff30] sys_ioctl at ffffffff811f46e1
#10 [ffff883edb11ff80] system_call_fastpath at ffffffff81649909
    RIP: 00007f5438b3f537  RSP: 00007ffef141f478  RFLAGS: 00010206
    RAX: 0000000000000010  RBX: ffffffff81649909  RCX: 00007f5438b39c90
    RDX: 0000000000000000  RSI: 0000000000005437  RDI: 0000000000000003
    RBP: 00007ffef141f4a0   R8: 00007f5438e0ce80   R9: 0000000000000000
    R10: 00007ffef141f200  R11: 0000000000000206  R12: 0000000000000000
    R13: 0000000000000000  R14: 00007ffef141f580  R15: 0000000000400560
    ORIG_RAX: 0000000000000010  CS: 0033  SS: 002b

从下面的__tty_hangup的代码看出,调用tty_ldisc_hangup 前,因为调用了tty_lock(tty);那么确实持有了一把tty->legacy_mutex .

static void __tty_hangup(struct tty_struct *tty, int exit_session)
{
    struct file *cons_filp = NULL;
    struct file *filp, *f = NULL;
    struct tty_file_private *priv;
    int    closecount = 0, n;
    int refs;

    if (!tty)
        return;


    spin_lock(&redirect_lock);
    if (redirect && file_tty(redirect) == tty) {
        f = redirect;
        redirect = NULL;
    }
    spin_unlock(&redirect_lock);

    tty_lock(tty);-----------------------------------------加锁

    /* some functions below drop BTM, so we need this bit */
    set_bit(TTY_HUPPING, &tty->flags);

    /* inuse_filps is protected by the single tty lock,
       this really needs to change if we want to flush the
       workqueue with the lock held */
    check_tty_count(tty, "tty_hangup");

    spin_lock(&tty_files_lock);
    /* This breaks for file handles being sent over AF_UNIX sockets ? */
    list_for_each_entry(priv, &tty->tty_files, list) {
        filp = priv->file;
        if (filp->f_op->write == redirected_tty_write)
            cons_filp = filp;
        if (filp->f_op->write != tty_write)
            continue;
        closecount++;
        __tty_fasync(-1, filp, 0);    /* can't block */
        filp->f_op = &hung_up_tty_fops;
    }
    spin_unlock(&tty_files_lock);

    refs = tty_signal_session_leader(tty, exit_session);
    /* Account for the p->signal references we killed */
    while (refs--)
        tty_kref_put(tty);

    /*
     * it drops BTM and thus races with reopen
     * we protect the race by TTY_HUPPING
     */
    tty_ldisc_hangup(tty);-----------------------阻塞,阻塞的原因上面已经描述了。

    spin_lock_irq(&tty->ctrl_lock);
    clear_bit(TTY_THROTTLED, &tty->flags);
    clear_bit(TTY_PUSH, &tty->flags);
    clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
    put_pid(tty->session);
    put_pid(tty->pgrp);
    tty->session = NULL;
    tty->pgrp = NULL;
    tty->ctrl_status = 0;
    spin_unlock_irq(&tty->ctrl_lock);

    /*
     * If one of the devices matches a console pointer, we
     * cannot just call hangup() because that will cause
     * tty->count and state->count to go out of sync.
     * So we just call close() the right number of times.
     */
    if (cons_filp) {
        if (tty->ops->close)
            for (n = 0; n < closecount; n++)
                tty->ops->close(tty, cons_filp);
    } else if (tty->ops->hangup)
        (tty->ops->hangup)(tty);
    /*
     * We don't want to have driver/ldisc interactions beyond
     * the ones we did here. The driver layer expects no
     * calls after ->hangup() from the ldisc side. However we
     * can't yet guarantee all that.
     */
    set_bit(TTY_HUPPED, &tty->flags);
    clear_bit(TTY_HUPPING, &tty->flags);

    tty_unlock(tty);-------------------------------导致没有走到这放锁。

    if (f)
        fput(f);
}

本来以为分析已经完成了,结果看了一下tty_ldisc_hangup的代码,又推翻了自己的判断。下面,我们先来看一下tty_ldisc_hangup运行到哪行代码。

crash> dis -l ffffffff813b8dc4
/usr/src/debug/kernel-3.10.0-327.22.2.el7/linux-3.10.0-327.22.2.el7.x86_64/drivers/tty/tty_ldisc.c: 690
0xffffffff813b8dc4 <tty_ldisc_hangup+196>:      cmpq   $0x0,0x50(%rbx)

690行刚好就是tty_ldisc_lock_pair,也就是tty_ldisc_lock_pair_timeout(tty, tty2, MAX_SCHEDULE_TIMEOUT);

我们看下tty_ldisc_hangup的代码:

void tty_ldisc_hangup(struct tty_struct *tty)
{
    struct tty_ldisc *ld;
    int reset = tty->driver->flags & TTY_DRIVER_RESET_TERMIOS;
    int err = 0;

    tty_ldisc_debug(tty, "closing ldisc: %p\n", tty->ldisc);

    ld = tty_ldisc_ref(tty);
    if (ld != NULL) {
        if (ld->ops->flush_buffer)
            ld->ops->flush_buffer(tty);
        tty_driver_flush_buffer(tty);
        if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
            ld->ops->write_wakeup)
            ld->ops->write_wakeup(tty);
        if (ld->ops->hangup)
            ld->ops->hangup(tty);
        tty_ldisc_deref(ld);
    }

    wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
    wake_up_interruptible_poll(&tty->read_wait, POLLIN);

    tty_unlock(tty);------------------------这里明明释放了锁

    /*
     * Shutdown the current line discipline, and reset it to
     * N_TTY if need be.
     *
     * Avoid racing set_ldisc or tty_ldisc_release
     */
    tty_ldisc_lock_pair(tty, tty->link);--------------------690行,也就是tty_ldisc_lock_pair_timeout(tty, tty2, MAX_SCHEDULE_TIMEOUT);跟堆栈一致。
    tty_lock(tty);--------------------------重新加上锁

    if (tty->ldisc) {

        /* At this point we have a halted ldisc; we want to close it and
           reopen a new ldisc. We could defer the reopen to the next
           open but it means auditing a lot of other paths so this is
           a FIXME */
        if (reset == 0) {

            if (!tty_ldisc_reinit(tty, tty->termios.c_line))
                err = tty_ldisc_open(tty, tty->ldisc);
            else
                err = 1;
        }
        /* If the re-open fails or we reset then go to N_TTY. The
           N_TTY open cannot fail */
        if (reset || err) {
            BUG_ON(tty_ldisc_reinit(tty, N_TTY));
            WARN_ON(tty_ldisc_open(tty, tty->ldisc));
        }
    }
    tty_ldisc_enable_pair(tty, tty->link);
    if (reset)
        tty_reset_termios(tty);

    tty_ldisc_debug(tty, "re-opened ldisc: %p\n", tty->ldisc);
}

这说明,明明5628进程释放了tty->legacy_mutex啊,为什么1号进程的互斥锁的owner还指向它呢?这个留在下次单独对互斥信号来描述。

我们再次回到那把tty->legacy_mutex锁,

    wait_list = {
      next = 0xffff881fd35c7b70, 
      prev = 0xffff881fd35c7b70
    }, 
list -s mutex_waiter.task 0xffff881fd35c7b70
ffff881fd35c7b70
  task = 0xffff883fd1630000
ffff883f5ee2ac88
  task = 0xffff880190f5c500
crash> task 0xffff883fd1630000
PID: 1      TASK: ffff883fd1630000  CPU: 1   COMMAND: "systemd"
crash> task 0xffff880190f5c500
PID: 5628   TASK: ffff880190f5c500  CPU: 47  COMMAND: "main.o"

5628怎么可能既是owner,又是waiter呢?这个问题我们放到后面来解释。

crash> struct tty_struct.link ffff883f5ee2ac00
  link = 0x0

所以后面的调用链就是:tty_ldisc_lock_pair(tty, tty->link);---->tty_ldisc_lock_pair_timeout(0xffff883f5ee2ac00,0,MAX_SCHEDULE_TIMEOUT)--->tty_ldisc_lock--->ldsem_down_write

5628阻塞在线路规程的锁,也就是tty->ldisc_sem,这个是一把读写锁,在没打开debug的情况下,是没有owner成员的。

crash> struct tty_struct.ldisc_sem ffff883f5ee2ac00
  ldisc_sem = {
    count = -8589934591, 
    wait_lock = {
      raw_lock = {
        {
          head_tail = 655370, 
          tickets = {
            head = 10, 
            tail = 10
          }
        }
      }
    }, 
    wait_readers = 1, 
    read_wait = {
      next = 0xffff8801846d3df0, 
      prev = 0xffff8801846d3df0
    }, 
    write_wait = {
      next = 0xffff883edb11fd10, 
      prev = 0xffff883edb11fd10
    }
  }

要找到owner,又得人肉遍历堆栈了。和《记录linux tty的一次软锁排查》一样,也是占用了锁,但本来的意愿是占用200ms超时,由于属性被修改,导致了占用无限时间。

那么,很显然,这个测试脚本,可以测试《记录linux tty的一次软锁排查》中的修改是否已经ok。

修改脚本如下:

#!/bin/bash
while [ 1 ]
do
  for i in {1..64}
  do
    ./main.o /dev/tty$i
  done
done

 之前,在未修改fd为noblock的时候,是必现,改完之后,暴力测试一天都正常。

 

下面,针对前面所说的为什么wait里面看到的task和owner是同一个这个问题,再进行下解释。

tty_init_dev初始化一个tty的时候,调用initialize_tty_struct------>mutex_init(&tty->legacy_mutex);---->__mutex_init,代码如下

__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
{
    atomic_set(&lock->count, 1);
    spin_lock_init(&lock->wait_lock);
    INIT_LIST_HEAD(&lock->wait_list);
    mutex_clear_owner(lock);
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
    lock->osq = NULL;
#endif

    debug_mutex_init(lock, name, key);
}

此时,lock的wait_list只包含一个头结点,也就是&lock->wait_list,也就是0xffff881fd35c7b70

此时如果用list -s mutex_waiter.task 0xffff881fd35c7b70 去查看,那么对应的task是NULL。

我们来看mutex_waiter的结构:

struct mutex_waiter {
    struct list_head    list;
    struct task_struct    *task;
#ifdef CONFIG_DEBUG_MUTEXES
    void            *magic;
#endif
};

本来lock->wait_list把mutex_waiter 串起来,而在struct mutex结构中,owner成员刚好就位于struct list_head wait_list的后面,所以当owner获取锁之后,设置owner指针,刚好

就是和mutex_waiter 中设置task一样,所以这次看到的互斥锁的list中,使用list方法查看,会出现owner和wait指向同一个task的现象。

 

posted on 2017-11-02 11:29  _备忘录  阅读(1757)  评论(0编辑  收藏  举报