经典排序算法Java版(动图演示)
首先,这篇博客的来源是因为我在学习排序算法的时候,看到了一位大神写的十大经典排序算法,写的真的很不错,这是我整理后用于自己以后观看学习的,如有错误,欢迎指正。
本文转自https://www.cnblogs.com/onepixel/p/7674659.html#!comments 感谢大佬的分享。
一、算法概述
1、 算法分类
十种常见排序算法可以分为两大类:
比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。
非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。
2、算法复杂度
3、 相关概念
稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。
不稳定:如果a原本在b的前面,而a=b,排序之后 a 可能会出现在 b 的后面。
时间复杂度:对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。
空间复杂度:是指算法在计算机
内执行时所需存储空间的度量,它也是数据规模n的函数。
二、算法
1、冒泡排序(Bubble Sort)
冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
1.1 算法描述
比较相邻的元素。如果第一个比第二个大,就交换它们两个;
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
针对所有的元素重复以上的步骤,除了最后一个;
重复步骤1~3,直到排序完成。
1.2 动图演示
1.3 代码实现
public static int[] bubbleSort(int[] arr) { int temp; for(int i = 0; i < arr.length- 1; i++) {//排序arr.length-1个元素,所以循环arr.length-1次 for(int j = 0; j < arr.length- 1 - i; j++) { if(arr[j] > arr[j+1]) {// 相邻元素两两对比 temp = arr[j+1];// 元素交换 arr[j+1] = arr[j]; arr[j] = temp; } } } return arr; }
2、选择排序(Selection Sort)
选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
2.1 算法描述
n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:
初始状态:无序区为R[1..n],有序区为空;
第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
n-1趟结束,数组有序化了。
2.2 动图演示
2.3 代码实现
public static int[] selectionSort(arr) { int minIndex, temp; for (int i = 0; i < arr.length - 1; i++) { minIndex = i; for (int j = i + 1; j < arr.length; j++) { if (arr[j] < arr[minIndex]) { // 寻找最小的数 minIndex = j; // 将最小数的索引保存 } } temp = arr[i]; arr[i] = arr[minIndex]; arr[minIndex] = temp; } return arr; }
2.4 算法分析
表现最稳定的排序算法之一,因为无论什么数据进去都是O(n^{2}n2 )的时间复杂度,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了吧。
3、插入排序(Insertion Sort)
插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
3.1 算法描述
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
- 从第一个元素开始,该元素可以认为已经被排序;
- 取出下一个元素,在已经排序的元素序列中从后向前扫描;
- 如果该元素(已排序)大于新元素,将该元素移到下一位置;
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
- 将新元素插入到该位置后;
重复步骤2~5。
3.2 动图演示
3.2 代码实现
public static int[] insertionSort(int arr) { int preIndex, current; for (int i = 1; i < arr.length; i++) { preIndex = i - 1; current = arr[i]; while (preIndex >= 0 && arr[preIndex] > current) { arr[preIndex + 1] = arr[preIndex]; preIndex--; } arr[preIndex + 1] = current; } return arr; }
3.4 算法分析
插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
简单排序之间的比较
对于已经有序或基本有序的数据来说,插入排序要好的多。当数据有序的时候,while循环条件总是假,所以它变成了外层循环中的一个简单语句,执行N-1次。在这种情况下,算法运行只需要O(N)的时间。
然而,对于逆序排列的数据,每次比较和移动都会执行,所以插入排序不比冒泡排序快。
(时间上)
冒泡排序算法:当数据量很小的时候它会有些应用的价值。
选择排序:当数据量很小,并且交换数据相对于比较数据更加耗时的情况下,可以应用选择排序;
在大多数情况下,假设当数据比较小或基本有序时,插入排序算法是三种简单排序算法中最好的选择。对于更大数据量的排序来说,“快速排序”通常是最快的方法;
4、希尔排序(Shell Sort)
1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。
4.1 算法描述
先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:
选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
按增量序列个数k,对序列进行k 趟排序;
每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
4.2 动图演示
4.3 代码实现
public static int[] shellSort(int[] arr) { for (int gap = Math.floor(arr.length/ 2); gap > 0; gap = Math.floor(gap / 2)) { // 注意:这里和动图演示的不一样,动图是分组执行,实际操作是多个分组交替执行; for (int i = gap; i < arr.length; i++) {//分组的组员之间间隔为gap,因为i++所以可以使数组的每个元素与前面间隔为gap的值进行比较; int j = i;// int current = arr[i]; while (j - gap >= 0 && current < arr[j - gap]) {//与间隔为gap的数组的值进行比较 arr[j] = arr[j - gap]; j = j - gap; } arr[j] = current; } } return arr; }
4.4 算法分析
希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。动态定义间隔序列的算法是《算法(第4版)》的合著者Robert Sedgewick提出的。
5、归并排序(Merge Sort)
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
5.1 算法描述
把长度为n的输入序列分成两个长度为n/2的子序列;
对这两个子序列分别采用归并排序;
将两个排序好的子序列合并成一个最终的排序序列。
5.2 动图演示
5.3 代码实现
package BasicClass; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Two6 { public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); int size = Integer.parseInt(reader.readLine()); String[] nums = reader.readLine().split(" "); int[] arr = new int[size]; for (int i = 0; i < size; i++) { arr[i]=Integer.parseInt(nums[i]); } Two6 one20 = new Two6(); int[] main = one20.Main(arr, 0, arr.length - 1); StringBuilder builder = new StringBuilder(); for (int i : main) { builder.append(i+" "); } System.out.println(builder); } /** * 给你一个n代表有n个数字,然后你需要使用归并排序将这些数字从小到大排好。 * @param arr * @return */ public int[] Main(int[] arr,int left,int right){ if(left==right){ return new int[]{arr[left]}; } int mid = left+((right-left)>>1); int[] lArr = Main(arr, left, mid); int[] rArr = Main(arr, mid+1, right); int[] helper = helper(lArr, rArr); return helper; } public int[] helper(int[] lArr,int[] rArr){ int[] arr = new int[lArr.length + rArr.length]; int pLeft = 0; int pRight = 0; int index = 0; while (pLeft<lArr.length && pRight<rArr.length){ arr[index++] = lArr[pLeft]<rArr[pRight]?lArr[pLeft++]:rArr[pRight++]; } while (pLeft<lArr.length){ arr[index++] = lArr[pLeft++]; } while (pRight<rArr.length){ arr[index++] = rArr[pRight++]; } return arr; } }
5.4 算法分析
归并排序是一种稳定的排序方法。和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(nlogn)的时间复杂度。代价是需要额外的内存空间。
6、快速排序(Quick Sort)
快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
6.1 算法描述
快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:
从数列中挑出一个元素,称为 “基准”(pivot);
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
6.2 动图演示
6.3 代码实现
package BasicClass.Two; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Two_13 { public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); int size = Integer.parseInt(reader.readLine()); String[] nums = reader.readLine().split(" "); int[] arr = new int[size]; for (int i = 0; i < size; i++) { arr[i]=Integer.parseInt(nums[i]); } Two_13 one20 = new Two_13(); one20.process(arr,0,arr.length-1); StringBuilder builder = new StringBuilder(); for (int i : arr) { builder.append(i+" "); } System.out.println(builder); } public void process(int[] arr,int L,int R){ if(L<R){ swap(arr, L+(int)(Math.random()*(R-L+1)),R); int[] ints = partition(arr, L, R); process(arr,L,ints[0]-1); process(arr,ints[1]+1,R); } } public int[] partition(int[] arr,int L,int R){ int less = L-1;//<区的左边界 int more = R;//>区的右边界 while (L < more){ if(arr[L] < arr[R]){ swap(arr,++less,L++); }else if(arr[L] > arr[R]){ swap(arr,--more,L); }else { L++; } } swap(arr,more,R); return new int[]{less+1,more}; } private void swap(int[] arr,int i,int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } }
7、堆排序(Heap Sort)
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。(大根堆、小根堆)
7.1 算法描述
将初始待排序关键字序列(R1,R2….Rn)构建成大跟堆(此时R1为最大值);
将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
7.2 动图演示
7.3 代码实现
package BasicClass.Two; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Two8 { public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); int size = Integer.parseInt(reader.readLine()); String[] nums = reader.readLine().split(" "); int[] arr = new int[size]; for (int i = 0; i < size; i++) { arr[i]=Integer.parseInt(nums[i]); } Two8 one20 = new Two8(); one20.heapSort(arr); StringBuilder builder = new StringBuilder(); for (int i : arr) { builder.append(i+" "); } System.out.println(builder); } /** * 给你一个n代表有n个数字,然后你需要使用堆排序将这些数字从小到大排好。 * @param arr * @return */ public void heapSort(int[] arr){ if(arr == null || arr.length < 2){ return; } // O(N*logN) 适用于后续数据为一个个插入的模式,最后得到一个大根堆 // for (int i = 0; i < arr.length; i++) { // heapInsert(arr,i); // } // O(N) 适用于直接将所有数据给你的模式(数组排序可以认为如此),最后得到一个大根堆 for (int i = arr.length-1; i >= 0; i--) { heapify(arr,i,arr.length); } // O(N*logN) int heapSize = arr.length; swap(arr,0,--heapSize); while (heapSize > 0){// O(N) heapify(arr,0,heapSize);// O(logN) swap(arr,0,--heapSize);// O(1) } } /** * arr[0...index-1]已经是小根堆了,某个数现在处在index位置,往上继续移动 * arr[o...index]都是小根堆 * @param arr * @param index */ public void heapInsert(int[] arr,int index){ while (arr[index] > arr[(index-1)/2]){ swap(arr,index,(index-1)/2); index = (index-1)/2; } } /** * arr(除index)已经是小根堆了,某个数现在处在index位置,往下继续移动 * arr都是小根堆 * @param arr * @param index */ public void heapify(int[] arr,int index,int heapsize){ int left = index*2+1;//左孩子的下标 while(left < heapsize){ int largest = left+1<heapsize && arr[left+1] > arr[left]?left+1:left; //父和较大的孩子之间,谁的值小,把下标给largest largest = arr[index] > arr[largest]?index:largest; if(largest == index){ break; } swap(arr,largest,index); index = largest; left = index*2+1; } } public void swap(int[] arr,int i,int j){ int tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp; } }
8、计数排序(Counting Sort)
计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。
8.1 算法描述
找出待排序的数组arr中最大和最小的元素;根据最大值最小值的差创建一个数组ints;
统计数组中每个值(i)的元素出现的次数,存入数组ints的第i项;
遍历数组,从前往后将数组ints相应位置index上有值的填充进arr;
8.2 动图演示
8.3 代码实现
package BasicClass.Three; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Test_Six { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int size = Integer.parseInt(br.readLine()); int[] arr = new int[size]; String[] split = br.readLine().split(" "); int maxvalue = Integer.parseInt(split[0]); int minvalue = Integer.parseInt(split[0]); for (int i = 0; i < size; i++) { arr[i] = Integer.parseInt(split[i]); maxvalue = Math.max(maxvalue,arr[i]); minvalue = Math.min(minvalue,arr[i]); } Sort(arr,maxvalue,minvalue); for (int i = 0; i < arr.length; i++) { System.out.print(arr[i]+" "); } } /** * 给你一个n代表有n个数字,然后你需要使用计数排序将这些数字从小到大排好。 * @param arr * @param maxvalue */ public static void Sort(int[] arr, int maxvalue,int minvalue){ int[] ints = new int[maxvalue-minvalue+1]; for (int i = 0; i < arr.length; i++) { ints[arr[i]-minvalue]++; } int index = 0; for (int i = 0; i < arr.length; i++) { while (ints[index]==0){ index++; } arr[i] = index+minvalue; ints[index]--; } } }
8.4 算法分析
计数排序是一个稳定的排序算法。当输入的元素是 n 个 0到 k 之间的整数时,时间复杂度是O(n+k),空间复杂度也是O(n+k),其排序速度快于任何比较排序算法。当k不是很大并且序列比较集中时,计数排序是一个很有效的排序算法。