Number Sequence
Number Sequence
Given two sequences of numbers : a[1], a[2], …… , a[N], and b[1], b[2], …… , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], …… , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], …… , a[N]. The third line contains M integers which indicate b[1], b[2], …… , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output
6
-1
题解:kmp算法,模板题;
全当做记模板。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int s[1000010], t[10010];
int next[10010];
int Kmp(int * s, int n, int * t, int m)
{
int i = 0, j = 0;
while(i < n)
{
if(j == -1 || s[i] == t[j])
{
++i; ++j;
if(j == m)
{
return i - m + 1;
}
}
else
{
j = next[j];
}
}
return -1;
}
void getnext(int *t, int m) {
int i = 0, j = 0;
next[0] = -1; j = next[i];
while(i < m) {
if(j == -1 || t[i] == t[j]) {
next[++i] = ++j;
}
else {
j = next[j];
}
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=0;i<n;i++)
scanf("%d",&s[i]);
for(int i=0;i<m;i++)
scanf("%d",&t[i]);
getnext(t, m);
printf("%d\n", Kmp(s, n, t, m));
}
return 0;
}

浙公网安备 33010602011771号