SOS dp(高维前缀dp)

SOS dp(高维前缀dp)

有个数组\(A\),求数组\(B\)

\(B[i]=\sum_{j|i=i} A[j]\)

数组\(A\)的下标从0到\(2^n\)

\(SOS dp\)可以在\(O(n2^n)\)算出来

代码

for (int i = 0; i < (1 << N); i++)
    B[i] = A[i];
for (int i = 0; i < N; i++)
    for (int j = (1 << N) - 1; j >= 0; j--)
        if (j & (1 << i))
            B[j] += B[j ^ (1 << i)];

也可以来求

\(B[i]=max\{A[j]\},i|j=i\)

for (int i = 0; i < (1 << N); i++)
    B[i] = A[i];
for (int i = 0; i < N; i++)
    for (int j = (1 << N) - 1; j >= 0; j--)
        if (j & (1 << i))
            B[j] = max(B[j], B[j ^ (1 << i)]);

或者

\(B[i]=\sum_{j|i=j} A[j]\)

for (int i = 0; i < (1 << N); i++)
    B[i] = A[i];
for (int i = 0; i < N; i++)
    for (int j = (1 << N) - 1; j >= 0; j--)
        if (!(j & (1 << i)))
            B[j] += B[j ^ (1 << i)];

例题我们需要更多的例题

Problem - F - Codeforces

\(a[i]|(a[j]\&a[k]) 的最大值,i<j<k\)

容易得到\(a[i]|(a[j]\&a[k])=\bar{a[i]}\&a[j]\&a[k]+a[i]\)

\(C[i]=i\)值出现得最早下标

那么我们可以算\(B[i]=\)\(\{C[j]\},(i|j=j)\)集合里得最大值

\(D[i]=\)\(\{C[j]\},(i|j=j)\)集合里得次大值

枚举\(a[i]\), 然后从高位枚举S(\((\bar{a[i]}\&a[j]\&a[k])|S=(\bar{a[i]}\&a[j]\&a[k])\)), 看D[S]是否大于i,如果大于\(ans=max(s+a[i],ans)\)

代码

const int mod = 998244353, N = 1e7 + 10, G = 3;
ll a[N];
ll B[N];
ll D[N];
void add(int x, int id)
{
    if (id > B[x])
    {
        D[x] = B[x];
        B[x] = id;
    }
    else if (id >= D[x])
    {
        D[x] = id;
    }
}
void solve()
{
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++)
    {
        cin >> a[i];
        add(a[i], i); // 初始话 B数组D数组
    }
    ll nx = 22;
    for (int i = 0; i < nx; i++) // sos dp
        for (int j = (1 << nx) - 1; j >= 0; j--)
            if (!(j & (1 << i)))
            {
                add(j, B[j ^ (1 << i)]);
                add(j, D[j ^ (1 << i)]);
            }
    ll ans = 0;
    for (int i = 1; i <= n; i++)
    {
        int c = (1 << nx) - 1 - a[i]; // 枚举非a[i]
        int s = 0;                    // S=非a[i]&a[j]&a[k];
        for (int j = nx - 1; j >= 0; j--)
        {
            if (!((c >> j) & 1)) // 非a[i]的第j位如果是0则continue,
                continue;
            s += (1 << j);
            if (D[s] < i)
            {
                s -= (1 << j);
            }
            ans = max(ans, a[i] + s);
        }
    }
    cout << ans << endl;
}

P5495 【模板】Dirichlet 前缀和 - 洛谷 (luogu.com.cn))

根据前面的代码可知道。

for (枚举所有集合i)
    B[i] = A[i];
for (枚举元素i)
    for (枚举集合j)
        if (如果集合j包含元素i)
            B[j] = max(B[j], B[集合j去除掉元素i]);

对于这个题我们可以把质数当作元素。

const int mod = 998244353, N = 2e7 + 10, G = 3;
int isVisit[N], prime[N], c = 0;
void EulerSevie(int n)
{
    for (int i = 2; i <= n; ++i) 
    {
        if (isVisit[i] == false) 
            prime[++c] = i;      
        for (int j = 1; j <= c && i * prime[j] <= n; ++j)
        {
            isVisit[i * prime[j]] = true;
            if (i % prime[j] == 0)
                break;
        }
    }
}
#define uint unsigned int
uint seed;
inline uint getnext()
{
    seed ^= seed << 13;
    seed ^= seed >> 17;
    seed ^= seed << 5;
    return seed;
}
uint b[N];
void solve()
{
    ll n;
    cin >> n >> seed;
    EulerSevie(n);
    for (int i = 1; i <= n; i++)
    {
        b[i] = getnext();
    }
    for (uint i = 1; i <= c; i++)
    {
        for (uint j = 1; prime[i] * j <= n; j++)
        {
            b[prime[i] * j] += b[j];
        }
    }
    uint ans = 0;
    for (int i = 1; i <= n; i++)
    {
        ans = ans ^ b[i];
    }
    cout << ans << endl;
}
posted @ 2025-09-09 21:32  _3449  阅读(17)  评论(0)    收藏  举报