排序七 归并排序

要点

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer的一个非常典型的应用。

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并

 

归并排序的基本思想

将待排序序列R[0...n-1]看成是n个长度为1的有序序列,将相邻的有序表成对归并,得到n/2个长度为2的有序表;将这些有序序列再次归并,得到n/4个长度为4的有序序列;如此反复进行下去,最后得到一个长度为n的有序序列。

综上可知:

归并排序其实要做两件事:

1)“分解”——将序列每次折半划分

2)“合并”——将划分后的序列段两两合并后排序

 

我们先来考虑第二步,如何合并

在每次合并过程中,都是对两个有序的序列段进行合并,然后排序。

这两个有序序列段分别为 R[low, mid] R[mid+1, high]

先将他们合并到一个局部的暂存数组R2中,带合并完成后再将R2复制回R中。

为了方便描述,我们称 R[low, mid] 第一段,R[mid+1, high] 为第二段。

每次从两个段中取出一个记录进行关键字的比较,将较小者放入R2中。最后将各段中余下的部分直接复制到R2中。

经过这样的过程,R2已经是一个有序的序列,再将其复制回R中,一次合并排序就完成了。

核心代码

public void Merge(int[] array, int low, int mid, int high) {
    int i = low; // i是第一段序列的下标
    int j = mid + 1; // j是第二段序列的下标
    int k = 0; // k是临时存放合并序列的下标
    int[] array2 = new int[high - low + 1]; // array2是临时合并序列

    
// 扫描第一段和第二段序列,直到有一个扫描结束
    while (i <= mid && j <= high) {
        // 判断第一段和第二段取出的数哪个更小,将其存入合并序列,并继续向下扫描
        if (array[i] <= array[j]) {
            array2[k] = array[i];
            i++;
            k++;
        } else {
            array2[k] = array[j];
            j++;
            k++;
        }
    }

    // 若第一段序列还没扫描完,将其全部复制到合并序列
    while (i <= mid) {
        array2[k] = array[i];
        i++;
        k++;
    }

    // 若第二段序列还没扫描完,将其全部复制到合并序列
    while (j <= high) {
        array2[k] = array[j];
        j++;
        k++;
    }

    // 将合并序列复制到原始序列中
    for (k = 0, i = low; i <= high; i++, k++) {
        array[i] = array2[k];
    }
}

掌握了合并的方法,接下来,让我们来了解  如何分解

在某趟归并中,设各子表的长度为gap,则归并前R[0...n-1]中共有n/gap个有序的子表:R[0...gap-1], R[gap...2*gap-1], ... , R[(n/gap)*gap ... n-1]

调用Merge将相邻的子表归并时,必须对表的特殊情况进行特殊处理。

若子表个数为奇数,则最后一个子表无须和其他子表归并(即本趟处理轮空):若子表个数为偶数,则要注意到最后一对子表中后一个子表区间的上限为n-1 

核心代码

public void MergePass(int[] array, int gap, int length) {
    int i = 0;

    // 归并gap长度的两个相邻子表
    for (i = 0; i + 2 * gap - 1 < length; i = i + 2 * gap) {
        Merge(array, i, i + gap - 1, i + 2 * gap - 1);
    }

    // 余下两个子表,后者长度小于gap
    if (i + gap - 1 < length) {
        Merge(array, i, i + gap - 1, length - 1);
    }
}

public int[] sort(int[] list) {
    for (int gap = 1; gap < list.length; gap = 2 * gap) {
        MergePass(list, gap, list.length);
        System.out.print("gap = " + gap + ":\t");
        this.printAll(list);
    }
    return list;
}


算法分析

归并排序算法的性能

排序类别

排序方法

时间复杂度

空间复杂度

稳定性

复杂性

平均情况

最坏情况

最好情况

归并排序

归并排序

O(nlog2n)

O(nlog2n)

O(nlog2n)

O(n)

稳定

较复杂

 

时间复杂度

归并排序的形式就是一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的可以得出它的时间复杂度是O(n*log2n)

 

空间复杂度

由前面的算法说明可知,算法处理过程中,需要一个大小为n的临时存储空间用以保存合并序列。

 

算法稳定性

在归并排序中,相等的元素的顺序不会改变,所以它是稳定的算法。

 

归并排序和堆排序、快速排序的比较

若从空间复杂度来考虑:首选堆排序,其次是快速排序,最后是归并排序。

若从稳定性来考虑,应选取归并排序,因为堆排序和快速排序都是不稳定的。

若从平均情况下的排序速度考虑,应该选择快速排序。 


完整参考代码

Java版本

 1 package notes.javase.algorithm.sort;
 2 
 3 public class MergeSort {
 4     public void Merge(int[] array, int low, int mid, int high) {
 5         int i = low; // i是第一段序列的下标
 6         int j = mid + 1; // j是第二段序列的下标
 7         int k = 0; // k是临时存放合并序列的下标
 8         int[] array2 = new int[high - low + 1]; // array2是临时合并序列
 9 
10         // 扫描第一段和第二段序列,直到有一个扫描结束
11         while (i <= mid && j <= high) {
12             // 判断第一段和第二段取出的数哪个更小,将其存入合并序列,并继续向下扫描
13             if (array[i] <= array[j]) {
14                 array2[k] = array[i];
15                 i++;
16                 k++;
17             } else {
18                 array2[k] = array[j];
19                 j++;
20                 k++;
21             }
22         }
23 
24         // 若第一段序列还没扫描完,将其全部复制到合并序列
25         while (i <= mid) {
26             array2[k] = array[i];
27             i++;
28             k++;
29         }
30 
31         // 若第二段序列还没扫描完,将其全部复制到合并序列
32         while (j <= high) {
33             array2[k] = array[j];
34             j++;
35             k++;
36         }
37 
38         // 将合并序列复制到原始序列中
39         for (k = 0, i = low; i <= high; i++, k++) {
40             array[i] = array2[k];
41         }
42     }
43 
44     public void MergePass(int[] array, int gap, int length) {
45         int i = 0;
46 
47         // 归并gap长度的两个相邻子表
48         for (i = 0; i + 2 * gap - 1 < length; i = i + 2 * gap) {
49             Merge(array, i, i + gap - 1, i + 2 * gap - 1);
50         }
51 
52         // 余下两个子表,后者长度小于gap
53         if (i + gap - 1 < length) {
54             Merge(array, i, i + gap - 1, length - 1);
55         }
56     }
57 
58     public int[] sort(int[] list) {
59         for (int gap = 1; gap < list.length; gap = 2 * gap) {
60             MergePass(list, gap, list.length);
61             System.out.print("gap = " + gap + ":\t");
62             this.printAll(list);
63         }
64         return list;
65     }
66 
67     // 打印完整序列
68     public void printAll(int[] list) {
69         for (int value : list) {
70             System.out.print(value + "\t");
71         }
72         System.out.println();
73     }
74 
75     public static void main(String[] args) {
76         int[] array = {
77                 9, 1, 5, 3, 4, 2, 6, 8, 7
78         };
79 
80         MergeSort merge = new MergeSort();
81         System.out.print("排序前:\t\t");
82         merge.printAll(array);
83         merge.sort(array);
84         System.out.print("排序后:\t\t");
85         merge.printAll(array);
86     }
87 }
View Code


运行结果
 

排序前:     9   1   5   3   4   2   6   8   7  
gap = 1:   1   9   3   5   2   4   6   8   7  
gap = 2:   1   3   5   9   2   4   6   8   7  
gap = 4:   1   2   3   4   5   6   8   9   7  
gap = 8:   1   2   3   4   5   6   7   8   9  
排序后:     1   2   3   4   5   6   7   8   9  


参考资料

《数据结构习题与解析》(B级第3版) 


相关阅读

欢迎阅读 程序员的内功——算法 系列 

示例源码:https://github.com/dunwu/algorithm-notes

posted @ 2015-03-09 16:06 静默虚空 阅读(...) 评论(...) 编辑 收藏