LeetCode:Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
可以参考我的另一篇博文最大子数组和(最大子段和)。
下面分别给出O(n)的动态规划解法和O(nlogn)的分治解法 本文地址
class Solution {
public:
int maxSubArray(int A[], int n) {
//最大字段和问题
int res = INT_MIN, sum = -1;
for(int i = 0; i < n; i++)
{
if(sum > 0)
sum += A[i];
else sum = A[i];
if(sum > res)res = sum;
}
return res;
}
};
class Solution {
public:
int maxSubArray(int A[], int n) {
//最大字段和问题
return helper(A, 0, n-1);
}
private:
int helper(int A[], const int istart, const int iend)
{
if(istart == iend)return A[iend];
int middle = (istart + iend) / 2;
int maxLeft = helper(A, istart, middle);
int maxRight = helper(A, middle + 1, iend);
int midLeft = A[middle];
int tmp = midLeft;
for(int i = middle - 1; i >= istart; i--)
{
tmp += A[i];
if(midLeft < tmp)midLeft = tmp;
}
int midRight = A[middle + 1];
tmp = midRight;
for(int i = middle + 2; i <= iend; i++)
{
tmp += A[i];
if(midRight < tmp)midRight = tmp;
}
return max(max(maxLeft, maxRight), midLeft + midRight);
}
};
【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3713525.html

浙公网安备 33010602011771号