中文手机评论情感分析系列(二)
第二部分是评论基于属性词典的分类,分类原则是只要评论中属性词典中的分词,那么评论就分到该属性类中去。
'''基于词典的评论文本按属性分类'''
import pandas as pd
import re,time
import jieba
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.naive_bayes import MultinomialNB
import numpy as np
import pyltp,os
class TextClass():
def __init__(self):
self.stopWord=[]
'''分词和词性标注'''
def seg_pos(self,sent):
stopWord_Path = 'D:/论文文件/学习文件/情感分析/dict词典/哈工大stopword .txt'
with open(stopWord_Path, 'r', encoding='utf-8') as fr: # 加载停用词
for word in fr.readlines():
self.stopWord.append(word.strip())
line = re.sub(r'[a-zA-Z0-9]*', '', sent)
abs_path = 'D:\\LTP\\ltp_data_v3.4.0\\' # 根目录绝对路径
cws_path = os.path.join(abs_path, 'cws.model') # 分词库文件路径
seg = pyltp.Segmentor() # 分词器对象
seg.load(cws_path) # 加载分词语料库
cword = seg.segment(line)
wordList = list(cword)
# print(wordList)
word_filter = [word for word in wordList if word not in self.stopWord]
pos_model_path = os.path.join(abs_path, 'pos.model') # 词性标注模型路径
pos = pyltp.Postagger()
pos.load(pos_model_path)
pos_word = pos.postag(word_filter)
pos.release() # 释放实例
seg.release()
# return list(pos_word),
return list(zip(word_filter, list(pos_word)))
'''特征提取'''
def feature_extraction(self,pos):
features = []
for i in pos:
if i[1] in ['n', 'nz', 'j']:
features.append(i[0]) # 直接获得评论中的特征词
return features
'''加载词典'''
def openFile(self,path):
with open(path,'r',encoding='utf-8') as f:
for word in f.readlines():
yield word.strip()
'''文本特征化'''
def text2feature(self,text_list):
feature_list=[]
for line in text_list:
pos=self.seg_pos(line)
if len(self.feature_extraction(pos))==0:#如果评论没有特征词的话,那么标记一下为'none',以便于后面对这类无特征文本的处理
feature_list.append(['none'])
else:
feature_list.append(self.feature_extraction(pos))
return feature_list
'''文本分类'''
def classify(self,feature_list):
abs_path = 'D:\\论文文件\\阅读论文\\写论文准备\\字典构建\\手机属性词典\\dictionary_0_3\\'
save_name = ['相机.txt', '处理器.txt', '价格.txt', '性能.txt', '续航.txt','外观.txt', '售后.txt']
c1 = list(self.openFile(abs_path+save_name[0]))
c2 = list(self.openFile(abs_path+save_name[1]))
c3 = list(self.openFile(abs_path+save_name[2]))
c4 = list(self.openFile(abs_path + save_name[3]))
c5 = list(self.openFile(abs_path + save_name[4]))
c6 = list(self.openFile(abs_path + save_name[5]))
c7 = list(self.openFile(abs_path + save_name[6]))
dict={'camera':set([]),'processor':set([]),'price':set([]),'performance':set([]),'endurance':set([]),'appearance':set([]),'serve':set([]),'none':set([])}
for i in range(len(feature_list)):
for j in feature_list[i]:
if j in c1:
dict['camera'].add(i)
if j in c2:
dict['processor'].add(i)
if j in c3:
dict['price'].add(i)
if j in c4:
dict['performance'].add(i)
if j in c5:
dict['endurance'].add(i)
if j in c6:
dict['appearance'].add(i)
if j in c7:
dict['serve'].add(i)
if j=='none' :
dict['none'].add(i)
return dict
##########!!!!!!这里缺少一个对于没有特正在7个属性词典的评论的处理,,明天解决!!!(初步想法是建立一个包含所有特征的词典,如果不在则评论放到无属性集合里
'''根据上面分类的结果(索引字典)将原文件里的评论分开,并存储'''
def classify_save(self,index_dict,abs_path,ori_file):
# 其中index_dict是分类的结果,为字典索引
# abs_path是存储分类文本的绝对地址
# ori_file是要分类的评论文本文件,且是DataFrame格式文件
#无返回文件,以csv格式存储分类结果
keys=index_dict.keys()
print(keys)
for i in keys:#注意encoding='gbk',index=False编码格式和去掉列的默认索引DataFrame.ix[]的用法
# print('关键词',i )
# print(list(index_dict[i]))
# print(ori_file.ix[list(index_dict[i])].comment)
ori_file.ix[list(index_dict[i])].to_csv(abs_path+i+'.csv',encoding='gbk',index=False)
'''集成所有功能的一个函数,直接输入预测数据地址,和保存分类好结果的地址'''
def all(self,pre_data_path,save_abs_path):
file=list(pd.read_csv(pre_data_path,sep=',',encoding='GBK').comment)
text_feature = self.text2feature(file)
result = self.classify(text_feature)
comment_file = pd.read_csv(pre_data_path, sep=',', encoding='GBK')
self.classify_save(result, save_abs_path, comment_file)
for i in result.keys():#输出各个属性评论占总评论的比例
print(i+'的评论比例:', len(result[i]) / len(file))
if __name__=='__main__' :
s=time.time()
'''对Excel中的预测数据按属性分类返回各类别评论索引'''
'''华为预测数据'''
path_xiaomi = 'D:/machinelearning data/crawlerData/xiaomi6X_pre_JD100.csv'
'''华为预测数据'''
path_huawei= 'D:/machinelearning data/crawlerData/huaweiP20_pre_JD100.csv'
abs_path_xiaomi='D:\\machinelearning data\\crawlerData\\cluster_data\\feature_phone_xiaomi\\'
abs_path_huawei='D:\\machinelearning data\\crawlerData\\cluster_data\\feature_phone_huawei\\'
demo=TextClass()
#demo.all(path_xiaomi,abs_path_xiaomi)
demo.all(path_huawei, abs_path_huawei)
e=time.time()
print('耗时:',e-s)

浙公网安备 33010602011771号