数据仓库随笔

 Impala与Hive的异同

原文链接:https://blog.csdn.net/bluejoe2000/article/details/51527029

  • 数据存储:使用相同的存储数据池都支持把数据存储于HDFS, HBase。
  • 元数据:两者使用相同的元数据。
  • SQL解释处理:比较相似都是通过词法分析生成执行计划。

执行计划:

  • Hive: 依赖于MapReduce执行框架,执行计划分成 map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会 被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。
  • Impala: 把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的 map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。

数据流:

  • Hive: 采用推的方式,每一个计算节点计算完成后将数据主动推给后续节点。
  • Impala: 采用拉的方式,后续节点通过getNext主动向前面节点要数据,以此方式数据可以流式的返回给客户端,且只要有1条数据被处理完,就可以立即展现出来,而不用等到全部处理完成,更符合SQL交互式查询使用。

内存使用:

  • Hive: 在执行过程中如果内存放不下所有数据,则会使用外存,以保证Query能顺序执行完。每一轮MapReduce结束,中间结果也会写入HDFS中,同样由于MapReduce执行架构的特性,shuffle过程也会有写本地磁盘的操作。
  • Impala: 在遇到内存放不下数据时,当前版本1.0.1是直接返回错误,而不会利用外存,以后版本应该会进行改进。这使用得Impala目前处理Query会受到一 定的限制,最好还是与Hive配合使用。Impala在多个阶段之间利用网络传输数据,在执行过程不会有写磁盘的操作(insert除外)。

调度:

  • Hive: 任务调度依赖于Hadoop的调度策略。
  • Impala: 调度由自己完成,目前只有一种调度器simple-schedule,它会尽量满足数据的局部性,扫描数据的进程尽量靠近数据本身所在的物理机器。调度器 目前还比较简单,在SimpleScheduler::GetBackend中可以看到,现在还没有考虑负载,网络IO状况等因素进行调度。但目前 Impala已经有对执行过程的性能统计分析,应该以后版本会利用这些统计信息进行调度吧。

容错:

  • Hive: 依赖于Hadoop的容错能力。
  • Impala: 在查询过程中,没有容错逻辑,如果在执行过程中发生故障,则直接返回错误(这与Impala的设计有关,因为Impala定位于实时查询,一次查询失败, 再查一次就好了,再查一次的成本很低)。但从整体来看,Impala是能很好的容错,所有的Impalad是对等的结构,用户可以向任何一个 Impalad提交查询,如果一个Impalad失效,其上正在运行的所有Query都将失败,但用户可以重新提交查询由其它Impalad代替执行,不 会影响服务。对于State Store目前只有一个,但当State Store失效,也不会影响服务,每个Impalad都缓存了State Store的信息,只是不能再更新集群状态,有可能会把执行任务分配给已经失效的Impalad执行,导致本次Query失败。

适用面:

  • Hive: 复杂的批处理查询任务,数据转换任务。
  • Impala:实时数据分析,因为不支持UDF,能处理的问题域有一定的限制,与Hive配合使用,对Hive的结果数据集进行实时分析。
  • hive.groupby.skewindata=true时,hive不支持多列上的去重操作,并报错
  • 当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group ByKey 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce中),最后完成最终的聚合操作。
  • 设置reduce个数(一个reduce生成一个文件)
    1、如果不指定reduce个数,hive会基于一下两个参数自动计算
          (1)hive.exec.reducers.bytes.per.reducer
                    这是每个reduce处理的数据量,默认为1G=1000000000
           (2)hive.exec.reducers.max(每个任务的最大reduce个数,默认1009)
        reduce个数=min(参数2,map端输出数据总量/参数1)
    2、设置每个reduce处理的数据量(例如1M)
           参数:hive.exec.reducers.bytes.per.reducer=1000000;
            reduce个数=map端输出数据总量/参数
    3、直接设置reduce个数
          set mapred.reduce.tasks=5;
    4、在2,3中设置的参数在以下情况出现时会失效
          (1)sql语句中没有group by的汇总
          (2)使用了order by
          (3)有笛卡尔积
          (4)map端输出的数据量小于hive.exec.reducers.bytes.per.reducer参数值
    设置map个数
        map个数和来源表文件压缩格式有关,.gz格式的压缩文件无法切分,每个文件会生成一个map
    set hive.hadoop.supports.splittable.combineinputformat=true; 只有这个参数打开,下面的3个参数才能生效
        set mapred.max.split.size=16000000; 每个map负载
        set mapred.min.split.size.per.node=100000000; 每个节点map的最小负载,这个值必须小于set mapred.max.split.size的值
        set mapred.min.split.size.per.rack=100000000; 每个机架map的最小负载
        set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;   
    • Map端:

      1.每个输入分片会让一个map任务来处理,默认情况下,以HDFS的一个块的大小(默认为64M)为一个分片,当然我们也可以设置块的大小。map输出的结果会暂且放在一个环形内存缓冲区中(该缓冲区的大小默认为100M,由io.sort.mb属性控制),当该缓冲区快要溢出时(默认为缓冲区大小的80%,由io.sort.spill.percent属性控制),会在本地文件系统中创建一个溢出文件,将该缓冲区中的数据写入这个文件。

      2.在写入磁盘之前,线程首先根据reduce任务的数目将数据划分为相同数目的分区,也就是一个reduce任务对应一个分区的数据。这样做是为了避免有些reduce任务分配到大量数据,而有些reduce任务却分到很少数据,甚至没有分到数据的尴尬局面。其实分区就是对数据进行hash的过程。然后对每个分区中的数据进行排序,如果此时设置了Combiner,将排序后的结果进行Combia操作,这样做的目的是让尽可能少的数据写入到磁盘。

      3.当map任务输出最后一个记录时,可能会有很多的溢出文件,这时需要将这些文件合并。合并的过程中会不断地进行排序和combia操作,目的有两个:1.尽量减少每次写入磁盘的数据量;2.尽量减少下一复制阶段网络传输的数据量。最后合并成了一个已分区且已排序的文件。为了减少网络传输的数据量,这里可以将数据压缩,只要将mapred.compress.map.out设置为true就可以了。

      4.将分区中的数据拷贝给相对应的reduce任务。有人可能会问:分区中的数据怎么知道它对应的reduce是哪个呢?其实map任务一直和其父TaskTracker保持联系,而TaskTracker又一直和JobTracker保持心跳。所以JobTracker中保存了整个集群中的宏观信息。只要reduce任务向JobTracker获取对应的map输出位置就ok了哦。

      Reduce端:

      1.Reduce会接收到不同map任务传来的数据,并且每个map传来的数据都是有序的。如果reduce端接受的数据量相当小,则直接存储在内存中(缓冲区大小由mapred.job.shuffle.input.buffer.percent属性控制,表示用作此用途的堆空间的百分比),如果数据量超过了该缓冲区大小的一定比例(由mapred.job.shuffle.merge.percent决定),则对数据合并后溢写到磁盘中。

      2.随着溢写文件的增多,后台线程会将它们合并成一个更大的有序的文件,这样做是为了给后面的合并节省时间。其实不管在map端还是reduce端,MapReduce都是反复地执行排序,合并操作,现在终于明白了有些人为什么会说:排序是hadoop的灵魂。

      3.合并的过程中会产生许多的中间文件(写入磁盘了),但MapReduce会让写入磁盘的数据尽可能地少,并且最后一次合并的结果并没有写入磁盘,而是直接输入到reduce函数。

  •  

    2. SQL转化为MapReduce的过程
        了解了MapReduce实现SQL基本操作之后,我们来看看Hive是如何将SQL转化为MapReduce任务的,整个编译过程分为六个阶段:

    Antlr定义SQL的语法规则,完成SQL词法,语法解析,将SQL转化为抽象语法树AST Tree
    遍历AST Tree,抽象出查询的基本组成单元QueryBlock
    遍历QueryBlock,翻译为执行操作树OperatorTree,
    逻辑层优化器进行OperatorTree变换,合并不必要的ReduceSinkOperator,减少shuffle数据量
    遍历OperatorTree,翻译为MapReduce任务
    物理层优化器进行MapReduce任务的变换,生成最终的执行计划
    在slice中,将着六个阶段表示为:

    解析:将HIVEQL解析为AST。
    语义解析:将AST翻译为QB。
    生成逻辑计划:将QB转化为OperatorTree
    优化逻辑计划
    生成物理执行计划:将OperatorTree转化为TaskTree
    优化物理计划

posted @ 2019-08-23 15:38  ilzs  Views(165)  Comments(0)    收藏  举报