实验6:开源控制器实践——RYU

(一)基本要求

1.搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。

 

 

 

2.阅读Ryu文档的The First Application一节,运行当中的L2Switch,h1 ping h2或h3,在目标主机使用 tcpdump 验证L2Switch,分析L2Switch和POX的Hub模块有何不同。

 

Hub和L2Switch实现的都是洪泛发送ICMP报文,比如当h1 ping h2时,h1发送给h2的ICMP报文,h3也会收到,但L2Switch下发的流表无法查看,而Hub可以查看。

 

 

3.编程修改L2Switch.py,另存为L2xxxxxxxxx.py,使之和POX的Hub模块的变得一致?(xxxxxxxxx为学号)

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER, CONFIG_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3

class L2102299222(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(L2102299222, self).__init__(*args, **kwargs)

    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_feathers_handler(self, ev):
       datapath=ev.msg.datapath
       ofproto=datapath.ofproto
       ofp_parser=datapath.ofproto_parser
       match=ofp_parser.OFPMatch()
       actions=[ofp_parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)]
       self.add_flow(datapath, 0, match, actions)
		
    def add_flow(self, datapath, priority, match, actions):
        ofp = datapath.ofproto
        ofp_parser = datapath.ofproto_parser
        inst=[ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS, actions)]
        mod = ofp_parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst)
        datapath.send_msg(mod)
        
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def packet_in_handler(self, ev):
        msg = ev.msg
        dp = msg.datapath
        ofp = dp.ofproto
        ofp_parser = dp.ofproto_parser

        in_port=msg.match['in_port']
        match=ofp_parser.OFPMatch()
        actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]

        data = None
        if msg.buffer_id == ofp.OFP_NO_BUFFER:
             data = msg.data 

        self.add_flow(dp, 1, match, actions)
        out = ofp_parser.OFPPacketOut(datapath=dp, buffer_id=msg.buffer_id, in_port=in_port, actions=actions, data = data)
        dp.send_msg(out)

 

 

(二)进阶要求

1.阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作,并回答下列问题:

# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch13(app_manager.RyuApp): #继承了ryu.base.app_manager
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] #OFP_VERSIONS指OpenFlow版本

    def __init__(self, *args, **kwargs):
        super(SimpleSwitch13, self).__init__(*args, **kwargs)
        self.mac_to_port = {}  #self.mac_to_port是一个保存(交换机id, mac地址)到转发端口的映射


    #处理SwitchFeatures事件
    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_features_handler(self, ev):
        datapath = ev.msg.datapath  #datapath存储交换机的信息
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        # install table-miss flow entry
        #
        # We specify NO BUFFER to max_len of the output action due to
        # OVS bug. At this moment, if we specify a lesser number, e.g.,
        # 128, OVS will send Packet-In with invalid buffer_id and
        # truncated packet data. In that case, we cannot output packets
        # correctly.  The bug has been fixed in OVS v2.1.0.
        match = parser.OFPMatch() #match指流表项匹配,这里OFPMatch()指不匹配任何信息
        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] #actions是动作,表示匹配成功不缓存数据包并发送给控制器
        self.add_flow(datapath, 0, match, actions) #add_flow是添加流表项的函数,我们可以从add_flow的函数中看到其调用了send_msg(mod),因此本函数的目的即为下发流表。

    #add_flow()函数作用是增加流表,参数有datapath,priority, match, actions, buffer_id;
    def add_flow(self, datapath, priority, match, actions, buffer_id=None):
        #获取交换机信息
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
        #对action进行包装
        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)]
        #判断是否存在buffer_id,并生成mod对象
        if buffer_id:
            mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id, priority=priority, match=match, instructions=inst)
        else:
            mod = parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst)
        datapath.send_msg(mod)
        
    #说明控制器在MAIN_DISPATCHER状态并且触发Packet_In事件时调用_packet_in_handler函数
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        # If you hit this you might want to increase
        # the "miss_send_length" of your switch
        if ev.msg.msg_len < ev.msg.total_len: #传输出错,打印debug信息
            self.logger.debug("packet truncated: only %s of %s bytes", ev.msg.msg_len, ev.msg.total_len)
          
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
        in_port = msg.match['in_port'] #获取源端口

        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocols(ethernet.ethernet)[0]

        if eth.ethertype == ether_types.ETH_TYPE_LLDP:#从接收到的Packet_In报文中取出各种信息,如果报文是lldp报文,忽略它。随后用此dpid(交换机id)初始化mac_to_port,并在日志打印此Packet_In的基本信息。     
            # ignore lldp packet
            return
        dst = eth.dst #获取目标端口
        src = eth.src #获取源端口

        dpid = format(datapath.id, "d").zfill(16)
        self.mac_to_port.setdefault(dpid, {}) 

        self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

        # learn a mac address to avoid FLOOD next time.
        self.mac_to_port[dpid][src] = in_port #交换机自学习,取来往数据包的交换机id、源mac和入端口绑定来构造表。

        if dst in self.mac_to_port[dpid]: #若在表中找到出端口信息,指示出端口
            out_port = self.mac_to_port[dpid][dst]
        else:
            out_port = ofproto.OFPP_FLOOD #泛洪

        actions = [parser.OFPActionOutput(out_port)]

        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
            # verify if we have a valid buffer_id, if yes avoid to send both
            # flow_mod & packet_out
            if msg.buffer_id != ofproto.OFP_NO_BUFFER :#有buffer_id,带上buffer_id,然后只发送Flow_mod报文,因为交换机已经有缓存数据包,就不需要发送packet_out报文
                self.add_flow(datapath, 1, match, actions, msg.buffer_id) #add_flow函数内部就已发送了Flow_mod报文。,后面不用send_msg()
                return
            else:
                self.add_flow(datapath, 1, match, actions)#若没有buffer_id,发送的Flow_Mod报文就无需要带上buffer_id,但是下一步要再发送一个Packet_out报文带上原数据包信息。
        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data
	#发送Packet_out数据包 带上交换机发来的数据包的信息
        out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                  in_port=in_port, actions=actions, data=data)
        #发送流表
        datapath.send_msg(out)

a) 代码当中的mac_to_port的作用是什么?

    mac_to_port是一个保存(交换机id, mac地址)到转发端口的映射。

b) simple_switch和simple_switch_13在dpid的输出上有何不同?

    simple_switch_13中dpid = format(datapath.id, "d").zfill(16),即dpid的输出格式为用0在dpid前填充至总长度为16,而simple_switch中dpid = datapath.id,即直接输出dpid。

c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?

    实现交换机以特性应答消息响应特性请求。

d) simple_switch_13是如何实现流规则下发的?

    当控制器处于CONFIG_DISPATCHER状态并且接受到FEATURE_REPLY报文时,执行switch_features_handler()函数。该函数的最后是add_flow添加流表项,当流表项匹配成功后应立即执行所规定的动作。如果此函数参数有buffer_id,那发送的Flow_Mod报文就带上buffer_id,若没有buffer_id,buffer_id就是None。最后,发出Flow_Mod报文,实现流规则的下发。

    当控制器处于MAIN_DISPATCHER状态并且触发Packet_In事件时调用_packet_in_handler函数,然后从接收到的Packet_In报文中取出各种信息,用此dpid(交换机id)初始化mac_to_port,然后进行交换机自学习,取来往数据包的交换机id、源mac和入端口绑定来构造表。如果交换机发来的数据包没有buffer_id,则要回复一个Packet_out报文并带上原数据包的信息,实现流规则的下发。

e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?

    switch_features_handler下发流表的优先级比_packet_in_handler高。因为switch_features_handler是在交换机处于协商版本并发送FEATURE-REQUEST报文状态时调用的,而_packet_in_handler是在已收到FEATURE-REPLY报文并发送SET-CONFIG报文时被调用的。

 

2.编程实现和ODL实验的一样的硬超时功能。

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class hardtimeout(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(hardtimeout, self).__init__(*args, **kwargs)
        self.mac_to_port = {}

    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_features_handler(self, ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        # install table-miss flow entry
        #
        # We specify NO BUFFER to max_len of the output action due to
        # OVS bug. At this moment, if we specify a lesser number, e.g.,
        # 128, OVS will send Packet-In with invalid buffer_id and
        # truncated packet data. In that case, we cannot output packets
        # correctly.  The bug has been fixed in OVS v2.1.0.
        match = parser.OFPMatch()
        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)]
        self.add_flow(datapath, 0, match, actions)

    def add_flow(self, datapath, priority, match, actions, buffer_id=None, hard_timeout=0):
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)]
        if buffer_id:
            mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id, priority=priority, match=match, instructions=inst, hard_timeout=hard_timeout)
        else:
            mod = parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst, hard_timeout=hard_timeout)
        datapath.send_msg(mod)

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        # If you hit this you might want to increase
        # the "miss_send_length" of your switch
        if ev.msg.msg_len < ev.msg.total_len:
            self.logger.debug("packet truncated: only %s of %s bytes", ev.msg.msg_len, ev.msg.total_len)
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
        in_port = msg.match['in_port']

        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocols(ethernet.ethernet)[0]

        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            return
        dst = eth.dst
        src = eth.src

        dpid = format(datapath.id, "d").zfill(16)
        self.mac_to_port.setdefault(dpid, {})

        self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

        # learn a mac address to avoid FLOOD next time.
        self.mac_to_port[dpid][src] = in_port

        if dst in self.mac_to_port[dpid]:
            out_port = self.mac_to_port[dpid][dst]
        else:
            out_port = ofproto.OFPP_FLOOD

        actions = [parser.OFPActionOutput(out_port)]\

        actions_timeout=[]

        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
            # verify if we have a valid buffer_id, if yes avoid to send both
            # flow_mod & packet_out
            hard_timeout=10
            if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                self.add_flow(datapath, 2, match, actions_timeout, msg.buffer_id,hard_timeout=10)
                self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                return
            else:
                self.add_flow(datapath, 2, match, actions_timeout, hard_timeout=10)
                self.add_flow(datapath, 1, match, actions)
        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data

        out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions, data=data)
        datapath.send_msg(out)

运行结果:

 

交换机流表:

 

 

 

个人总结

     本次实验我学到了部署RYU控制器,理解了RYU控制器实现软件定义的集线器原理和RYU控制器实现软件定义的交换机原理。本次实验对我来说难度较大,特别是代码阅读量较大,阅读起来较困难,花费了较多的时间。在运行L2Switch.py时,通过使用 tcpdump的结果没有发现L2Switch和POX的Hub模块有何不同,经过上网查询和对比代码后才发现二者的不同之处在于L2Switch不能查看到下发的流表。在编程修改L2Switch.py使之和POX的Hub模块的变得一致时遇到了各种错误,比如openflow的版本以及一些语法问题等,通过上网查询后修改代码得以完成。

posted @ 2022-10-17 00:31  102299222  阅读(60)  评论(0)    收藏  举报