104. 二叉树的最大深度
详解
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
/*
// 迭代
int maxDepth(TreeNode* root) {
int result = 0;
queue<TreeNode*> queue_1;
if(root != NULL) queue_1.push(root);
while(!empty(queue_1)){
int size = queue_1.size();
for(int i=0; i<size; i++){
TreeNode* node = queue_1.front();
queue_1.pop();
if(node->left) queue_1.push(node->left);
if(node->right) queue_1.push(node->right);
}
result++;
}
return result;
}
*/
//递归
int search(TreeNode* root, int depth){
if(root == NULL) return depth;
int depth_left = search(root->left, depth + 1);
int depth_right = search(root->right, depth + 1);
return max(depth_left, depth_right);
}
int maxDepth(TreeNode* root) {
return search(root, 0);
}
};
559. N 叉树的最大深度
/*
// Definition for a Node.
class Node {
public:
int val;
vector<Node*> children;
Node() {}
Node(int _val) {
val = _val;
}
Node(int _val, vector<Node*> _children) {
val = _val;
children = _children;
}
};
*/
class Solution {
public:
int maxDepth(Node* root) {
if(root == NULL) return 0;
int depth = 0;
for(int i=0; i<root->children.size(); i++){
depth = max (depth, maxDepth(root->children[i]));
}
return depth + 1;
}
};
111. 二叉树的最小深度
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
/*
int minDepth(TreeNode* root) {
if (root == NULL) return 0;
int depth = 0;
queue<TreeNode*> que;
que.push(root);
while(!que.empty()) {
int size = que.size();
depth++; // 记录最小深度
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
if (!node->left && !node->right) { // 当左右孩子都为空的时候,说明是最低点的一层了,退出
return depth;
}
}
}
return depth;
}
*/
//递归
int search(TreeNode* node){
if(node == NULL) return 0;
int left_depth = search(node->left);
int right_depth = search(node->right);
// 当一个左子树为空,右不为空,这时并不是最低点
if (node->left == NULL && node->right != NULL) {
return 1 + right_depth;
}
// 当一个右子树为空,左不为空,这时并不是最低点
if (node->left != NULL && node->right == NULL) {
return 1 + left_depth;
}
return min(left_depth, right_depth) + 1;
}
int minDepth(TreeNode* root) {
return search(root);
}
};
222. 完全二叉树的节点个数
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int countNodes(TreeNode* root) {
/*
if(root == NULL) return 0;
return countNodes(root->left) + countNodes(root->right) + 1;
*/
if (root == nullptr) return 0;
TreeNode* left = root->left;
TreeNode* right = root->right;
int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
while (left) { // 求左子树深度
left = left->left;
leftDepth++;
}
while (right) { // 求右子树深度
right = right->right;
rightDepth++;
}
if (leftDepth == rightDepth) {
return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
}
return countNodes(root->left) + countNodes(root->right) + 1;
}
};