Loading

伯努利数 学习笔记

自然幂数 \(\{1, k, k^2, k^3, ...\}\),即 \(G_k =e^{kx}\)

自然幂数和的 \(\rm EGF\)\(S_n(x) = \sum\limits_{i = 0}^{n - 1} G_i(x) = \sum\limits_{i = 0}^{n - 1} e^{ix} = \dfrac{e^{nx} - 1}{e^x - 1}\)

伯努利数的 \(\rm EGF\)\(B(x) = \dfrac{x}{e^x - 1}\) 。这个东西多项式求逆就可以算了。

那么自然幂数和 \(S_n(x) = \dfrac{e^{nx} - 1}{x} B(x)\)

其中 \(G(x) = \dfrac{e^{nx} - 1}{x} = \sum\limits_{i = 0} \dfrac{x^i n^{i+1}}{(i + 1)!}\)

\(\sum\limits_{i=0}^{n-1} i^k = k! S_k[i] = k! \sum\limits_{i = 0}^{k} B_{k - i} G_i = k! \sum\limits_{i = 0}^{k} \dfrac{B_{k - i} n^{i + 1}}{(i + 1)!}\)

(所以 \(\sum\limits_{i=0}^{x} i^k = x^k + k! \sum\limits_{i = 0}^{k} \dfrac{B_{k - i} x^{i + 1}}{(i + 1)!}\),是 \(k+ 1\) 次多项式 )

  • 伯努利数的递推公式 : \(\sum\limits_{i = 0}^{n} \binom{n + 1}{i} B_i = 0\)。即:\(B_n = - \frac{1}{n + 1} \sum\limits_{i = 0}^{n - 1} \binom{n + 1}{i} B_i\)

例题

P3711 仓鼠的数学题

\[\sum\limits_{k = 0}^{n} a_k (x^k + \sum\limits_{i = 0}^{x - 1} i^k) \]

这个 \(x^k\) 显然可以提出来单独处理。

\[\sum\limits_{k = 0}^{n} a_k k! \sum\limits_{i= 0}^{k} \frac{x^{i + 1} B_{k - i}}{(i+1)!} \]

\[\sum\limits_{i = 0}^{n} \frac{x^{i + 1}}{(i + 1)!} \sum\limits_{k = i}^{n} B_{k - i} a_k k! \]

我们计算 \(g_i = \sum\limits_{k = i}^{n} B_{k - i} a_k\),最后乘上那个 \(\frac{1}{(i+1)!}\) 的系数最后加上 \(a\) 就是答案了。

(我 \(naive\) 了,用了二项式反演)

P4464 [国家集训队]JZPKIL

\[\sum\limits_{d | n} \sum\limits_{i = 1}^{n} [\gcd(i, n) = d] d^x (\frac{i \times n}{d})^y \]

\[n^y \sum\limits_{d | n} d^x \sum\limits_{i = 1}^{\frac{n}{d}} [\gcd(i \times d, n) = d](\frac{i \times d}{d})^y \]

\[n^y \sum\limits_{d | n} d^x \sum\limits_{i = 1}^{\frac{n}{d}} i ^ y \sum\limits_{g | \gcd(i, \frac{n}{d})} \mu(g) \]

\[n^y \sum\limits_{d | n} d^x \sum\limits_{g | \frac{n}{d}} \mu(g) \sum\limits_{i = 1}^{\frac{n}{dg}} (ig)^y \]

\[n^y \sum\limits_{d | n} d^x \sum\limits_{g | \frac{n}{d}} \mu(g) g^y \sum\limits_{i = 1}^{\frac{n}{dg}} i^y \]

\[n^y \sum\limits_{L | n} (\sum\limits_{d | L} d^x \mu(\frac{L}{d}) (\frac{L}{d})^y) \sum\limits_{i = 1}^{\frac{n}{L}} i^y \]

我们把这个东西用伯努利数得出 \(\sum\limits_{i = 1}^{x} i^y\) 多项式,设为 \(\sum\limits_{i = 0}^{y + 1} f_i x^i\)。我们用狄利克雷卷积算 \(F(d) = \sum\limits_{d | L} d^x \mu(\frac{L}{d}) (\frac{L}{d})^y\)

\[n^y \sum\limits_{L | n} F(L) \sum\limits_{j = 0}^{y + 1} f_i ( \frac{n}{L}) ^i \]

\[n^y \sum\limits_{i = 0}^{y + 1} f_i (\sum\limits_{L | n} F(L) (\frac{n}{L})^i) \]

枚举 \(n\) 的质因子然后狄利克雷卷积即可。

数据范围看错从上午调到下午啊啊啊

P7102 [w3R1] 算

先考虑对一个 \(c^k\) 计算的答案。

\[\sum\limits_{i = 1}^{n} p(i) [\gcd(i, n) = 1] \]

\[\sum\limits_{i = 1}^{n} p(i) \sum\limits_{d | i} \mu(d) \]

\[\sum\limits_{d | n} \mu(d) \sum\limits_{i = 1}^{\frac{n}{d}} p(id) \]

\[\sum\limits_{d | n} \mu(d) \sum\limits_{i = 1}^{\frac{n}{d}} \sum\limits_{j = 0}^{m - 1} a_j (id)^j \]

\[\sum\limits_{d | n} \mu(d)\sum\limits_{j = 0}^{m - 1} a_j d^j \sum\limits_{i = 1}^{\frac{n}{d}} i^j \]

这时候我们把 \(\sum\limits_{i = 1}^{\frac{n}{d}} i^j\) 展开成 \((\frac{n}{d})^j + (j+1)! \sum\limits_{i = 0}^{j} \frac{B_{j - i}}{(i+1)!} (\frac{n}{d})^{i + 1}\)

其实最后伯努利数那里要减去 \([j = 0]\),会有 \(\sum\limits_{d | n} \mu(d) = [n = 1]\) 的贡献,直接特判 \(n = 1\) 就好了。

\[\sum\limits_{d | n} \mu(d)\sum\limits_{j = 0}^{m - 1} a_j d^j ( (\frac{n}{d})^j + j! \sum\limits_{i = 0}^{j} \frac{B_{j - i}}{(i+1)!} (\frac{n}{d})^{i + 1} ) \]

\((\frac{n}{d})^j\) 看起来很不爽,发现算一下贡献就是 \((\sum\limits_{j = 0}^{m - 1} a_j n^j) (\sum\limits_{d | n} \mu(d)) = [n = 1] \sum\limits_{j = 0}^{m - 1} a_j n^j\),还是判一下 \(c = 1\) 就行了

\[\sum\limits_{d | n} \mu(d)\sum\limits_{j = 0}^{m - 1} a_j d^j j! \sum\limits_{i = 0}^{j} \frac{B_{j - i}}{(i+1)!} (\frac{n}{d})^{i + 1} \]

\[\sum\limits_{j = 0}^{m - 1} a_j j! \sum\limits_{i = 0}^{j} \frac{B_{j - i}}{(i+1)!} \sum\limits_{d | n} \mu(d) d^j (\frac{n}{d})^{i + 1} \]

\[\sum\limits_{j = 0}^{m - 1} a_j j! \sum\limits_{i = 0}^{j} n^{i+1} \frac{B_{j - i}}{(i+1)!} \sum\limits_{d | n} \mu(d) d^{j - i - 1} \]

\(f_k = \sum\limits_{d | n} \mu(d) d^{k - 1}\)

我们发现无论 \(n\) 取多少,\(f_k\) 都不变!( \(mu = 0\) )

\(f_k\) 可以通过狄利克雷卷积算出来。

\[\sum\limits_{j = 0}^{m - 1} a_j j ! \sum\limits_{i = 0}^{j} n^{i + 1} \frac{B_{j - i}}{(i + 1) !} f_{j - i} \]

\[\sum\limits_{i = 0}^{m - 1} \frac{n^{i + 1}}{(i + 1) !} \sum\limits_{j = i}^{m - 1} a_j j ! B_{j - i} f_{j - i} \]

\[\sum\limits_{i = 0}^{m - 1} \frac{n^{i + 1}}{(i + 1) !} \sum\limits_{j = 0}^{m - 1 - i} a_{j + i} (j + i) ! B_{j} f_{j} \]

\(a_i = a_i \times (i + 1)!\)\(B_j = B_j \times f_j\)\(d_i = \frac{1}{i!} \sum\limits_{j = 0}^{m - i-1} a_{i + j} \times B_j\) 即可。这个 \(d\) 用卷积可以轻松获得。

\[\sum\limits_{i = 1}^{m} n^i d_i \]

这个东西直接 \(CZT\) 就好了!

参考资料 : command_block 多项式计数杂谈

posted @ 2021-01-19 20:00  zhoukangyang  阅读(147)  评论(0)    收藏  举报