●BZOJ 2007 NOI 2010 海拔

题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=2007

题解:

网络流、最小割、对偶图

奇妙的题 ~

种种原因导致了高度要么为 0,要么为 1 (1),然后 0,1区域是分离的 (2)。
对于 (2) 是显然的,因为如果在一片 1的区域中出现了一个 0,那么把 0改为 1一定会更优。
而对于 (1) ,就只有感性一点理解了(没看到一个比较理性的讲解)。
    由于左上角为 0,右下角为 1,所以总会存在有上坡路。
    那么为了使上坡导致的体力消耗最少,我们会去选择一条流量小(流量设为w)的路从 0直接爬向 1,
    这样才是最优的。
    如果此时不一次性爬上去,而是爬部分高度 h (0<h<1) 那么以后也必然会爬到 1,
    但那时流量的大小就不如之前的 w小了,所以总的消耗是大于在流量小的边一次性爬上 1的。

所以至此,求出左上角 S ->右下角 T 的最小割便是答案了。
(这条割把图分为了 0部 和 1部)

但是跑网络流会超时。
由于图的特殊性——非常规则,
所以就把中间的各个区域抽象成一个个的点,
图的左下的空白区域看成是 S点,
图的右上的空白区域看成是 T点,
然后按照("左手定则",诶呀,管的怎么建的,符合题意就可以了)一定的方向把原图的边变为与它垂直的边(边权不变),连接新的那些点,
最后跑一个更加高效的最短路算法,求出S->T的最短路就是答案了。
(可以感性理解为是在模拟去割那张图)。

代码:

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 300000
#define MAXM 3000000
#define ll long long
using namespace std;
struct Edge{
	ll to[MAXM],val[MAXM],nxt[MAXM],head[MAXN],ent;
	void Init(){ent=2;}//记得初始化 
	void Adde(ll u,ll v,ll w){
		to[ent]=v; val[ent]=w; nxt[ent]=head[u]; head[u]=ent++;
	}
	ll Next(ll i,bool type){
		return type?head[i]:nxt[i];
	}
}E;
ll dis[MAXN];
ll N;
ll idx(ll i,ll j){
	return (i-1)*N+j;
}
ll Dijkstra(ll S,ll T){
	typedef pair<ll,ll>pii;
	static bool vis[MAXN];
	memset(vis,0,sizeof(vis));
	memset(dis,0x3f,sizeof(dis)); ll u,v;
	priority_queue<pii,vector<pii>,greater<pii> >q; q.push(make_pair(0,S)); dis[S]=0;
	while(!q.empty()){
		u=q.top().second; q.pop();
		if(vis[u]) continue; vis[u]=1;
		for(ll i=E.Next(u,1);i;i=E.Next(i,0)){
			v=E.to[i];
			if(vis[v])continue;
			if(dis[v]<=dis[u]+E.val[i]) continue;
			dis[v]=dis[u]+E.val[i];
			q.push(make_pair(dis[v],v));
		}
	}
	return dis[T];
}
int main()
{
	freopen("altitude.in","r",stdin);freopen("altitude.out","w",stdout);
	E.Init(); ll S,T;
	scanf("%lld",&N);
	S=N*N+1; T=S+1;
	for(ll i=1,x,from,to;i<=N+1;i++)
		for(ll j=1;j<=N;j++){
			scanf("%lld",&x);
			from=i==N+1?S:idx(i,j);
			to=i==1?T:idx(i-1,j);
			E.Adde(from,to,x);
		}
	for(ll i=1,x,from,to;i<=N;i++)
		for(ll j=1;j<=N+1;j++){
			scanf("%lld",&x);
			from=j==1?S:idx(i,j-1);
			to=j==N+1?T:idx(i,j);
			E.Adde(from,to,x);
		}
	for(ll i=1,x,from,to;i<=N+1;i++)
		for(ll j=1;j<=N;j++){
			scanf("%lld",&x);
			from=i==1?T:idx(i-1,j);
			to=i==N+1?S:idx(i,j);
			E.Adde(from,to,x);
		}
	for(ll i=1,x,from,to;i<=N;i++)
		for(ll j=1;j<=N+1;j++){
			scanf("%lld",&x);
			from=j==N+1?T:idx(i,j);
			to=j==1?S:idx(i,j-1);
			E.Adde(from,to,x);
		}
	ll ans=Dijkstra(S,T);
	printf("%lld",ans);
	return 0;
}



Do not go gentle into that good night.
Rage, rage against the dying of the light.
————Dylan Thomas
posted @ 2017-12-01 19:51  *ZJ  阅读(101)  评论(0编辑  收藏  举报