一、普利姆算法(Prim)

算法思路:以顶点为主导地位,从起始顶点出发,通过选择当前可用的最小权值边把顶点加入到生成树当中来:

  1.从连通网络N={V,E}中的某一顶点U0出发,选择与它关联的具有最小权值的边(U0,V),将其顶点加入到生成树的顶点集合U中。

  2.以后每一步从一个顶点在U中,而另一个顶点不在U中的各条边中选择权值最小的边(U,V),把它的顶点加入到集合U中。如此继续下去,直到网络中的所有顶点都加入到生成树顶点集合U中为止。 

 

二、克鲁斯卡尔算法(kruskal)

 相比于Prim算法,更常用的还是Kruskal,其原因在于Kruskal算法模板的代码量小而且思路易理解。

  算法思路:先构造一个只含 n 个顶点、而边集为空的子图,把子图中各个顶点看成各棵树上的根结点,之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,即把两棵树合成一棵树,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直到森林中只有一棵树,也即子图中含有 n-1 条边为止。

  步骤:

  1. 新建图G,G中拥有原图中相同的节点,但没有边;
  2. 将原图中所有的边按权值从小到大排序;
  3. 从权值最小的边开始,如果这条边连接的两个节点于图G中不在同一个连通分量中,则添加这条边到图G中;
  4. 重复3,直至图G中所有的节点都在同一个连通分量中。

  简单来说就是以边为主导地位,每次选择权值最小的边,判断该边连接的两点是否连通,若不连通,则合并两点(合并操作以并查集实现)。记录合并的次数,当次数等于n-1时结束。

 

三、简单总结

(1)复杂度分析:克鲁斯卡尔算法的时间复杂度为O(eloge);

         普里姆算法的时间复杂度为,朴素算法O(v^2),使用小顶堆优化O(VlogV + ElogV),使用斐波那契堆优化O(E + VlogV)。


(2)克鲁斯卡尔算法主要针对边展开,边数少时效率会很高,所以对于稀疏图有优势而普利姆算法对于稠密图,即边数非常多的情况会好些。

 

四、附加内容

破圈法

每次选定图中一个环,去掉环中最大权值的边,把圈圈破掉。

所有圈破掉时,剩下的就是最小生成树

 

posted on 2020-09-19 12:11  高数考了59  阅读(303)  评论(0)    收藏  举报