基于mykernel 2.0编写一个操作系统内核

一、配置mykernel 2.0,熟悉Linux内核的编译

  在ubuntu下运行如下命令 

wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch
sudo apt install axel
axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
xz -d linux-5.4.34.tar.xz
tar -xvf linux-5.4.34.tar
cd linux-5.4.34
patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
make defconfig # Default configuration is based on 'x86_64_defconfig'
make -j$(nproc)
sudo apt install qemu # install QEMU
qemu-system-x86_64 -kernel arch/x86/boot/bzImage

  执行成功后,会跳出如下界面, 从qemu窗口中您可以看到my_start_kernel在执行, 同时my_timer_handler时钟中断处理程序周期性执行

  

 

 

 

二、基于mykernel 2.0编写一个操作系统内核

  在mymain.c基础上继续写进程描述PCB和进程链表管理等代码,在myinterrupt.c的基础上完成进程切换代码,实现一个小的可运行的操作系统内核

  参考:  https://github.com/mengning/mykernel

  将git上提供的mymain.c和myinterrupt.c替换掉本地的文件内容, 再添加一个mypcb.h文件,定义进程控制块管理进程, 完成后执行make命令重新编译,

  

  再执行qemu-system-x86_64 -kernel arch/x86/boot/bzImage命令即可

  

 

 

 

三、操作系统内核核心功能及运行工作机制

  操作系统核心功能主要有:   进程管理, 设备管理,文件管理,处理器管理,存储器管理,

  本次实验更深入了解进程结构以及进程切换机制

  分析如下代码,理解进程切换运行工作机制:

/* linux/mykernel/mymain.c 
* Kernel internal my_start_kernel 
* Change IA32 to x86-64 arch, 2020/4/26
 
* Copyright (C) 2013, 2020 Mengning
   
*/

#include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/tty.h> #include <linux/vmalloc.h> #include "mypcb.h" tPCB task[MAX_TASK_NUM]; tPCB * my_current_task = NULL; volatile int my_need_sched = 0; void my_process(void); void __init my_start_kernel(void)  // mykernel内核代码的⼊⼝ { int pid = 0;  // 初始进程时进程号为0的进程 int i;
   // 初始化该进程的信息
/* Initialize process 0*/ task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid];
   // 构建进程的循环单链表,将各个进程连接起来
/*fork more process */ for(i=1;i<MAX_TASK_NUM;i++) { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]); task[i].next = task[i-1].next; task[i-1].next = &task[i]; } /* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid];
  // 插入编译代码,启动首进程 asm
volatile(
     // 将初始进场的堆栈栈顶地址放入rsp寄存器里
"movq %1,%%rsp\n\t"   /* set task[pid].thread.sp to rsp */ "pushq %1\n\t" /* push rbp */ "pushq %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to rip */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ ); } int i = 0; void my_process(void) {
while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
       // 检测
my_need_sched, 当变为1时,做进程切换
        if(my_need_sched == 1) {
          my_need_sched
= 0;
          my_schedule();
        }     
        printk(KERN_NOTICE
"this is process %d +\n",my_current_task->pid);
    }
  }
}
/*
 *  linux/mykernel/myinterrupt.c
 *
 *  Kernel internal my_timer_handler
 *  Change IA32 to x86-64 arch, 2020/4/26
 *
 *  Copyright (C) 2013, 2020  Mengning
 *
 */
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>

#include "mypcb.h"

extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

/*
 * Called by timer interrupt.
 * it runs in the name of current running process,
 * so it use kernel stack of current running process
 */
void my_timer_handler(void)  // 时钟中断处理函数
{
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    } 
    time_count ++ ;  
    return;      
}

void my_schedule(void)    // 进程切换处理函数
{
    tPCB * next;
    tPCB * prev;

    if(my_current_task == NULL 
        || my_current_task->next == NULL)
    {
        return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;   // 下一个要进程
    prev = my_current_task;      // 指向当前进程
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */  // 判断下一个进程的状态是否为可执行
    {        
        my_current_task = next;   // 
        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); 
     // 插入编译代码, 进行进程上下文的切换
/* switch to next process */ asm volatile(
       // 保存上一个进程的rbp和rsp
"pushq %%rbp\n\t" /* save rbp of prev */   "movq %%rsp,%0\n\t" /* save rsp of prev */
        // rsp指向next->thread.sp下一个进程栈 "movq %2,%%rsp\n\t" /* restore rsp of next */
        // 保存上一个进程的rip "movq $1f,%1\n\t" /* save rip of prev */
        // 当前rip指向下一个进程的地址 "pushq %3\n\t" "ret\n\t" /* restore rip of next */
        // rbp指向下一个进程的栈底 "1:\t" /* next process start here */ "popq %%rbp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }
/*
 *  linux/mykernel/mypcb.h
 *  Kernel internal PCB types
 *  Copyright (C) 2013  Mengning
 */
#define MAX_TASK_NUM        4       // 进程数量
#define KERNEL_STACK_SIZE   1024*2    // 栈大小
/* CPU-specific state of this task */
struct Thread {
    unsigned long        ip;
    unsigned long        sp;
};
typedef struct PCB{
    int pid;    // 进程号
    volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */  // 当前进程状态
    unsigned long stack[KERNEL_STACK_SIZE];  
    /* CPU-specific state of this task */
    struct Thread thread;  // 线程
    unsigned long    task_entry;  // 进程下执行的线程
    struct PCB *next;         // 下一个PCB, 所有进程的PCB以链表结构相连
}tPCB;
void my_schedule(void);

 

posted @ 2020-05-13 19:09  zhouzwt  阅读(202)  评论(0编辑  收藏  举报