[LOJ6261]一个人的高三楼

loj

description

给你一个长度为\(n\)的数列\(a_i\),求它的\(k\)次前缀和模\(998244353\)。(就是做\(k\)次前缀和后的数列)
\(n\le10^5,k\le2^{60}\)

sol

\(F_t(x)\)表示数列在做过\(t\)次前缀和之后的生成函数。
尝试构造一个函数\(G(x)\),满足\(F_t(x)G(x)\equiv F_{t+1}(x) \mod x^n\)
发现\(G(x)=\sum_{i=0}^{n}x^i\)
所以有\(F_k(x)=F_0(x)G^k(x)\)。直接多项式快速幂即可,理论复杂度\(O(n\log n)\)。(用多项式\(\ln\)多项式\(\exp\)那套理论就可以做到复杂度与\(k\)无关)

以上那种方法我没写,谁来写一写看看能不能跑得过去吧
考虑一下上式的组合意义。因为\(G(x)\)的每一项都是\(1\),那么\([x^i]G^k(x)\)相当于从\(k\)个盒子里取出若干个球使取出来的总数为\(i\)的方案数。在这里认为盒子不同而球相同。而这个方案数显然是可以组合算的,用隔板法即可。
也就是说,\(G^k(x)=\sum_{i=0}^{n}\binom{i+k-1}{k-1}x^i\)
发现\(k\)非常大不好预处理组合数。考虑组合数的一个同层的递推式:\(\binom{n+1}{m}=\binom{n}{m}\times\frac{n+1}{n-m+1}\)
所以直接递推即可,复杂度\(O(n\log n)\)

code

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
	int x=0,w=1;char ch=getchar();
	while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
	if (ch=='-') w=0,ch=getchar();
	while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
	return w?x:-x;
}
const int N = 4e5+5;
const int mod = 998244353;
int n,k,len,rev[N],l,og[N],a[N],b[N];
int fastpow(int a,int b){
	int res=1;
	while(b){if(b&1)res=1ll*res*a%mod;a=1ll*a*a%mod;b>>=1;}
	return res;
}
void ntt(int *P,int opt){
	for (int i=0;i<len;++i) if (i<rev[i]) swap(P[i],P[rev[i]]);
	for (int i=1;i<len;i<<=1){
		int W=fastpow(3,(mod-1)/(i<<1));
		if (opt==-1) W=fastpow(W,mod-2);
		og[0]=1;for (int j=1;j<i;++j) og[j]=1ll*og[j-1]*W%mod;
		for (int p=i<<1,j=0;j<len;j+=p)
			for (int k=0;k<i;++k){
				int x=P[j+k],y=1ll*og[k]*P[j+k+i]%mod;
				P[j+k]=(x+y)%mod,P[j+k+i]=(x-y+mod)%mod;
			}
	}
	if (opt==-1) for (int i=0,Inv=fastpow(len,mod-2);i<len;++i) P[i]=1ll*P[i]*Inv%mod;
}
int main(){
	n=gi();long long tmp;scanf("%lld",&tmp);k=tmp%mod;
	for (int i=1;i<=n;++i) a[i]=gi();
	b[0]=1;
	for (int i=1;i<=n;++i) b[i]=1ll*b[i-1]*(i+k-1)%mod*fastpow(i,mod-2)%mod;
	for (len=1;len<=n+n;len<<=1) ++l;--l;
	for (int i=0;i<len;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l);
	ntt(a,1);ntt(b,1);
	for (int i=0;i<len;++i) a[i]=1ll*a[i]*b[i]%mod;
	ntt(a,-1);
	for (int i=1;i<=n;++i) printf("%d\n",a[i]);return 0;
}
posted @ 2018-06-30 17:05  租酥雨  阅读(531)  评论(1编辑  收藏  举报