[luoguP2336] [SCOI2012]喵星球上的点名(后缀数组 + 暴力)
原本的想法是把所有的串不管是名字还是询问都连起来,记录一下询问串在sa数组中的位置
对于每个询问可以在sa数组中二分出左右边界,第一问用莫队,第二问差分乱搞。
结果发现我差分的思路想错了,先写了一个暴力,二分出左右边界之后直接从l枚举到r,想试试正确性,就交了一遍,结果过了。。。。
因为是暴力,可以不用二分左右边界,直接向左向右枚举扩展就可以了,st表也不用了,但我懒得改了
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 2000001
using namespace std;
int n, m, cnt, mx, len;
int M[N], x[N], y[N], s[N], sa[N], b[N], d[N][21], Rank[N], Log[N], height[N], id[N], pos[N], ans[N], num[N];
inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
}
inline void build_sa()
{
int i, k, p;
for(i = 0; i < mx; i++) b[i] = 0;
for(i = 0; i < len; i++) b[x[i] = s[i]]++;
for(i = 1; i < mx; i++) b[i] += b[i - 1];
for(i = len - 1; i >= 0; i--) sa[--b[x[i]]] = i;
for(k = 1; k <= len; k <<= 1)
{
p = 0;
for(i = len - k; i < len; i++) y[p++] = i;
for(i = 0; i < len; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
for(i = 0; i < mx; i++) b[i] = 0;
for(i = 0; i < len; i++) b[x[y[i]]]++;
for(i = 1; i < mx; i++) b[i] += b[i - 1];
for(i = len - 1; i >= 0; i--) sa[--b[x[y[i]]]] = y[i];
swap(x, y);
p = 1, x[sa[0]] = 0;
for(i = 1; i < len; i++)
x[sa[i]] = y[sa[i - 1]] == y[sa[i]] && y[sa[i - 1] + k] == y[sa[i] + k] ? p - 1 : p++;
if(p >= len) break;
mx = p;
}
}
inline void build_height()
{
int i, j, k = 0;
for(i = 0; i < len; i++) Rank[sa[i]] = i;
for(i = 0; i < len; i++)
{
if(k) k--;
j = sa[Rank[i] - 1];
while(s[i + k] == s[j + k]) k++;
height[Rank[i]] = k;
}
}
inline void build_st()
{
int i, j;
for(i = 1; i < len; i++)
{
Log[i] = log2(i);
d[i][0] = height[i];
}
Log[i] = log2(i);
for(j = 1; (1 << j) < len; j++)
for(i = 1; i + (1 << j) - 1 < len; i++)
d[i][j] = min(d[i][j - 1], d[i + (1 << j - 1)][j - 1]);
}
inline int query(int l, int r)
{
int t = Log[r - l + 1];
return min(d[l][t], d[r - (1 << t) + 1][t]);
}
inline int search2(int p, int llen)
{
int r = p, l = 1, mid;
while(l <= r)
{
mid = (l + r) >> 1;
if(query(mid, p) >= llen) r = mid - 1;
else l = mid + 1;
}
return r;
}
inline int search1(int p, int llen)
{
p++;
int l = p, r = len - 1, mid;
while(l <= r)
{
mid = (l + r) >> 1;
if(query(p, mid) >= llen) l = mid + 1;
else r = mid - 1;
}
return l - 1;
}
inline void solve()
{
int i, j, l, r;
for(i = 1; i <= m; i++)
{
r = j = search1(Rank[id[i]], M[i]);
l = j = search2(Rank[id[i]], M[i]);
for(j = l; j <= r; j++)
if(!num[pos[sa[j]]]++ && pos[sa[j]]) cnt++, ans[pos[sa[j]]]++;
printf("%d\n", cnt);
cnt = 0;
for(j = l; j <= r; j++) num[pos[sa[j]]] = 0;
}
for(i = 1; i <= n; i++) printf("%d ", ans[i]);
}
int main()
{
int i, j, t;
n = read();
m = read();
for(i = 1; i <= n; i++)
for(j = 1; j <= 2; j++)
{
t = read();
while(t--)
{
pos[len] = i;
s[len++] = read() + 100000;
}
s[len++] = mx++;
}
for(i = 1; i <= m; i++)
{
M[i] = read();
id[i] = len;
for(j = 1; j <= M[i]; j++) s[len++] = read() + 100000;
s[len++] = mx++;
}
mx = 120000;
build_sa();
build_height();
build_st();
solve();
return 0;
}

浙公网安备 33010602011771号