基于mykernel 2.0编写一个操作系统内核

实验要求:

  1. 按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0,熟悉Linux内核的编译;
  2. 基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel 提供的范例代码
  3. 简要分析操作系统内核核心功能及运行工作机制

实验过程:

  • 配置mykernel 2.0
wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch  
sudo apt install axel
axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
xz -d linux-5.4.34.tar.xz
tar -xvf linux-5.4.34.tar
cd linux-5.4.34
patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
make defconfig 10 make -j$(nproc)
sudo apt install qemu 12 qemu-system-x86_64 -kernel arch/x86/boot/bzImage

         运行结果:

   

    内核启动,mymain.c就会不断输出my_time_handler here的打印信息,不断循环的调用了
    myinterrupt.c 当中产生的时钟中断,会打印出my_time_handler here信息。

  • 基于mykernel 2.0编写操作系统内核

在mykernel目录下增加一个mypcb.h 头文件,用来定义进程控制块。

#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*2
/* CPU-specific state of this task */
struct Thread {
    unsigned long        ip;
    unsigned long        sp;
};

typedef struct PCB{
    int pid;
    volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
    unsigned long stack[KERNEL_STACK_SIZE];
    /* CPU-specific state of this task */
    struct Thread thread;
    unsigned long    task_entry;
    struct PCB *next;
}tPCB;

void my_schedule(void);

对mymain.c中的my_start_kernel函数进行修改,并在mymain.c中增加了my_process函数,可以进行时间片轮转调度。

#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
#include "mypcb.h"

tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
 
volatile int my_need_sched = 0;
 
void my_process(void);

void __init my_start_kernel(void)
 
{
    int pid = 0;
    int i;
 
    /* Initialize process 0*/
 
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
 
    /*fork more process */
 
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
        task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
 
    /* start process 0 by task[0] */
 
    pid = 0;
    my_current_task = &task[pid];
    asm volatile(
        "movq %1,%%rsp\n\t"     /* set task[pid].thread.sp to rsp */
        "pushq %1\n\t"             /* push rbp */
        "pushq %0\n\t"             /* push task[pid].thread.ip */
        "ret\n\t"                 /* pop task[pid].thread.ip to rip */
        :
        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
    );
}
 
int i = 0;
void my_process(void)
 
{   
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
                my_schedule();
            }
            printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }    
    }
}

对myinterrupt.c的修改,my_timer_handler用来记录时间片,时间片消耗完之后完成调度,实现了进程的切换。

#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
  
#include "mypcb.h"
  
extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;
  
/*
 * Called by timer interrupt.
 * it runs in the name of current running process,
 * so it use kernel stack of current running process
 */
void my_timer_handler(void)
{
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    }
    time_count ++ ;
    return;  
}
  
void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;
  
    if(my_current_task == NULL
        || my_current_task->next == NULL)
    {
     return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {      
     my_current_task = next;
     printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
     /* switch to next process */
     asm volatile(
         "pushq %%rbp\n\t"      /* save rbp of prev */
         "movq %%rsp,%0\n\t"  /* save rsp of prev */
         "movq %2,%%rsp\n\t"     /* restore  rsp of next */
         "movq $1f,%1\n\t"       /* save rip of prev */
         "pushq %3\n\t"
         "ret\n\t"              /* restore  rip of next */
         "1:\t"                  /* next process start here */
         "popq %%rbp\n\t"
         : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
         : "m" (next->thread.sp),"m" (next->thread.ip)
     );
    }
    return;
}

重新编译内核源代码(命令不变),并启动QEMU:

实验过程分析

asm volatile(
        "movq %1,%%rsp\n\t"     /* set task[pid].thread.sp to rsp */
        "pushq %1\n\t"             /* push rbp */
        "pushq %0\n\t"             /* push task[pid].thread.ip */
        "ret\n\t"                 /* pop task[pid].thread.ip to rip */
        :
        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
    );

分析:1.将进程原堆栈的栈顶地址存入RSP寄存器,而task[pid].thread.sp初始值即为进程0的堆栈栈顶;

           2.将当前RBP寄存器的值压栈,因为是空栈,所以RSP与RBP相同。此时,RSP = RSP - 8;

           3.将当前进程的RIP压栈,值为初始化的my_process(void)函数的位置,此时,RSP = RSP - 8;

           4.将栈顶位置的task[0].thread.ip,也就是my_process(void)函数的地址放入RIP寄存器中。此时,RSP = RSP + 8;

           5.完成进程0的启动,执行my_process(void)函数。

  asm volatile(
         "pushq %%rbp\n\t"      /* save rbp of prev */
         "movq %%rsp,%0\n\t"  /* save rsp of prev */
         "movq %2,%%rsp\n\t"     /* restore  rsp of next */
         "movq $1f,%1\n\t"       /* save rip of prev */
         "pushq %3\n\t"
         "ret\n\t"              /* restore  rip of next */
         "1:\t"                  /* next process start here */
         "popq %%rbp\n\t"
         : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
         : "m" (next->thread.sp),"m" (next->thread.ip)
     );

分析:1.将当前RBP寄存器的值压入到进程0的堆栈;

           2.RSP寄存器指向进程的栈顶地址,即保存进程0的栈顶地址;而%0、%1是指汇编代码下面输入输出部分的编号;

           3.将进程1的栈顶地址存入RSP寄存器,完成进程0和进程1的堆栈切换;

           4.保存进程0当前RIP寄存器值,这里$1f是指标号1;

           5.将进程1的指令地址入栈,这时的next->thread.ip,在第一次执行时为进程1的起点my_process(void)函数,其余的情况均为$1f;

           6.将栈中的next->thread.ip放入RIP寄存器;

           7.标号1是一个特殊的地址位置,该位置的地址是$1f;

           8.将进程1堆栈的基地址从堆栈中弹出到RBP寄存器中;

           9.开始进程1,若进程1执行的过程中发生了进程调度和进程切换,进程0被会重新调度执行。

posted @ 2020-05-13 04:50  zxbs  阅读(178)  评论(0编辑  收藏  举报