Scrapy研究探索(六)——自动爬取网页之II(CrawlSpider)

.目的。

在教程(二)(http://blog.csdn.net/u012150179/article/details/32911511)中使用基于Spider实现了自己的w3cschool_spider,并在items.py中定义了数据结构,

pipelines.py中实现获得数据的过滤以及保存。

但是以上述方法只能爬取start_url列表中的网页,而网络爬虫如google等搜索引擎爬虫实现的就是对整个互联网的爬取,所以在本教程中研究使用scrapy自动实现多网页爬取功能。

在教程(五)(http://blog.csdn.net/u012150179/article/details/34486677)中已经编写继承自spider的类实现爬虫,实现了自动多网页爬取,这里引出CrawlSpider类,使用更简单方式实现自动爬取。

 

.热身。

1.CrawlSpider

1)概念与作用:

它是Spider的派生类,首先在说下Spider,它是所有爬虫的基类,对于它的设计原则是只爬取start_url列表中的网页,而从爬取的网页中获取link并继续爬取的工作CrawlSpider类更适合。

2)使用:

它与Spider类的最大不同是多了一个rules参数,其作用是定义提取动作。在rules中包含一个或多个Rule对象,Rule类与CrawlSpider类都位于scrapy.contrib.spiders模块中。

 

[python] view plaincopy在CODE上查看代码片派生到我的代码片
 
  1. class scrapy.contrib.spiders.Rule (  
  2. link_extractor, callback=None,cb_kwargs=None,follow=None,process_links=None,process_request=None )  

 

                     其中:

link_extractorLinkExtractor,用于定义需要提取的链接。

callback参数:当link_extractor获取到链接时参数所指定的值作为回调函数。



                      callback参数使用注意:

当编写爬虫规则时,请避免使用parse作为回调函数。于CrawlSpider使用parse方法来实现其逻辑,如果您覆盖了parse方法,crawlspider将会运行失败。

 

follow:指定了根据该规则从response提取的链接是否需要跟进。当callbackNone,默认值为true

process_links:主要用来过滤由link_extractor获取到的链接。

process_request:主要用来过滤在rule中提取到的request



2.LinkExtractor

(1)概念:

顾名思义,链接提取器。

(2) 作用:

response对象中获取链接,并且该链接会被接下来爬取。

(3) 使用:

通过SmglLinkExtractor提取希望获取的链接。

 

[python] view plaincopy在CODE上查看代码片派生到我的代码片
 
  1. classscrapy.contrib.linkextractors.sgml.SgmlLinkExtractor(  
  2. allow=(),deny=(),allow_domains=(),deny_domains=(),deny_extensions=None,restrict_xpaths=(),tags=('a','area'),attrs=('href'),canonicalize=True,unique=True,process_value=None)  


主要参数:

 

allow:满足括号中“正则表达式”的值会被提取,如果为空,则全部匹配。

deny:与这个正则表达式(或正则表达式列表)不匹配的URL一定不提取。

allow_domains:会被提取的链接的domains。

deny_domains:一定不会被提取链接的domains。

restrict_xpaths:使用xpath表达式,和allow共同作用过滤链接。



.RUN!

  1. shell中验证

    开始编写代码之前,使用scrapyshell查看使用SmglLinkExtractor在网页中获取到的链接:

     

    [python] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. scrapy shell http://blog.csdn.net/u012150179/article/details/11749017  

    继续import相关模块:

     

     

    [python] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. fromscrapy.contrib.linkextractors.sgml import SgmlLinkExtractor  

    现在使用SgmlLinkExtractor查看在当前网页中获得的链接:

     

     

    [python] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. item=SgmlLinkExtractor(allow=('/u012150179/article/details')).extract_links(response)  

    其中item为包含Link()对象的列表,现在显示其中的text元素(就是获取到的文章链接对应的文章标题):

     

     

    [python] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. for i in item:  
    2.     print i.text  

    部分结果截图:

     

    对照网页可以得到此时获取的是当前网页中所有满足allow条件的链接,不仅包含“下一篇”的链接,还有网页侧边栏“阅读排行“、”评论排行“中的文章链接。为了只获得”下一篇“文章链接,这就要进行所有链接的筛选,引入参数restrict_xpaths,继续:

     

    [python] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. item= SgmlLinkExtractor(allow=('/u012150179/article/details'),restrict_xpaths=('//li[@class="next_article"]')).extract_links(response)  

    这是在如上查看结果,便提取出了“下一篇”文章链接。

     

     

    注意:在shell中并不对提取到的link进行跟进。

    在这里不得不提的就是scrapy shell是对调试、验证很有用的交互工具。应该掌握。

     

    shell中进行了验证后进入写代码阶段。

编写代码

1)items.py和pipelines.py以及settings.py与之前教程类似,不详细描述。


2)爬虫编写。

上码:

 

[python] view plaincopy在CODE上查看代码片派生到我的代码片
 
  1. # -*- coding:utf-8 -*-  
  2.   
  3. from scrapy.contrib.spiders import CrawlSpider, Rule  
  4. from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor  
  5. from scrapy.selector import Selector  
  6. from CSDNBlogCrawlSpider.items import CsdnblogcrawlspiderItem  
  7.   
  8.   
  9. class CSDNBlogCrawlSpider(CrawlSpider):  
  10.   
  11.     """继承自CrawlSpider,实现自动爬取的爬虫。"""  
  12.   
  13.     name = "CSDNBlogCrawlSpider"  
  14.     #设置下载延时  
  15.     download_delay = 2  
  16.     allowed_domains = ['blog.csdn.net']  
  17.     #第一篇文章地址  
  18.     start_urls = ['http://blog.csdn.net/u012150179/article/details/11749017']  
  19.   
  20.     #rules编写法一,官方文档方式  
  21.     #rules = [  
  22.     #    #提取“下一篇”的链接并**跟进**,若不使用restrict_xpaths参数限制,会将页面中所有  
  23.     #    #符合allow链接全部抓取  
  24.     #    Rule(SgmlLinkExtractor(allow=('/u012150179/article/details'),  
  25.     #                          restrict_xpaths=('//li[@class="next_article"]')),  
  26.     #         follow=True)  
  27.     #  
  28.     #    #提取“下一篇”链接并执行**处理**  
  29.     #    #Rule(SgmlLinkExtractor(allow=('/u012150179/article/details')),  
  30.     #    #     callback='parse_item',  
  31.     #    #     follow=False),  
  32.     #]  
  33.   
  34.     #rules编写法二,更推荐的方式(自己测验,使用法一时经常出现爬到中间就finish情况,并且无错误码)  
  35.     rules = [  
  36.         Rule(SgmlLinkExtractor(allow=('/u012150179/article/details'),  
  37.                               restrict_xpaths=('//li[@class="next_article"]')),  
  38.              callback='parse_item',  
  39.              follow=True)  
  40.     ]  
  41.   
  42.     def parse_item(self, response):  
  43.   
  44.         #print "parse_item>>>>>>"  
  45.         item = CsdnblogcrawlspiderItem()  
  46.         sel = Selector(response)  
  47.         blog_url = str(response.url)  
  48.         blog_name = sel.xpath('//div[@id="article_details"]/div/h1/span/a/text()').extract()  
  49.   
  50.         item['blog_name'] = [n.encode('utf-8') for n in blog_name]  
  51.         item['blog_url'] = blog_url.encode('utf-8')  
  52.   
  53.         yield item  

 

 

运行:

 

[python] view plaincopy在CODE上查看代码片派生到我的代码片
 
  1. scrapy crawl CSDNBlogCrawlSpider  


得到的效果如教程(五)一致。

 

 

其中指出和教程(五)所编写爬虫方法的差异:

首先,基类CrawlSpider提供了更完善的自动多网页爬取机制,只需要我们配置的就是rules,通过Rule对象实现链接的提取与跟进,恩,对,没了。。。就这样。详细的注释也都在程序中。

进行到这里,就将本篇文章主题讲述完毕,核心是CrawlSpider,主要方法是rules。

 

 

 

关于scrapy的使用可参见之前文章:

 

http://blog.csdn.net/u012150179/article/details/34913315

http://blog.csdn.net/u012150179/article/details/34486677

http://blog.csdn.net/u012150179/article/details/34441655

http://blog.csdn.net/u012150179/article/details/32911511

posted @ 2018-01-18 19:49 巅峰之斗 阅读(...) 评论(...) 编辑 收藏