摘要: PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇文章的 阅读全文
posted @ 2021-04-12 20:27 jasonzhangxianrong 阅读(147) 评论(0) 推荐(0)
摘要: 聚类(Clustering),顾名思义就是“物以类聚,人以群分”,其主要思想是按照特定标准把数据集聚合成不同的簇,使同一簇内的数据对象的相似性尽可能大,同时,使不在同一簇内的数据对象的差异性尽可能大。通俗地说,就是把相似的对象分到同一组。 聚类算法通常不使用训练数据,只要计算对象间的相似度即可应用算 阅读全文
posted @ 2021-04-12 14:31 jasonzhangxianrong 阅读(1037) 评论(0) 推荐(0)