import numpy as np
from scipy.stats import chi2, multivariate_normal
from utils.data_metrics import mean_squared_error
from utils.data_manipulation import train_test_split, polynomial_features
class BayesianRegression(object):
"""贝叶斯回归模型。如果指定了poly_degree,那么特征将被转换为多项式基函数。
将被转换为多项式基函数,从而实现多项式的 回归。
假设权重为正态先验和似然,缩放后的逆卡方先验和似然为正态。
秩平方先验和权重方差的似然。
Parameters:
-----------
n_draws: float
从参数的后验中提取的模拟次数。
mu0: array
参数的先验正态分布的均值。
omega0: array
参数的先验正态分布的精度矩阵。
nu0: float
先验标度反卡方分布的自由度。
sigma_sq0: float
先验标度反卡方分布的尺度参数。
poly_degree: int
特征应被转换为的多项式程度。允许 进行多项式回归。
cred_int: float
可信区间(ETI在本例中)。95 => 参数后验的95%可信区间。
"""
def __init__(self, n_draws, mu0, omega0, nu0, sigma_sq0, poly_degree=0, cred_int=95):
self.w = None
self.n_draws = n_draws
self.poly_degree = poly_degree
self.cred_int = cred_int
# Prior parameters
self.mu0 = mu0
self.omega0 = omega0
self.nu0 = nu0
self.sigma_sq0 = sigma_sq0
# 允许从缩放的反卡方分布进行模拟。假设方差是按照这个分布的。
# https://en.wikipedia.org/wiki/Scaled_inverse_chi-squared_distribution
def _draw_scaled_inv_chi_sq(self, n, df, scale):
X = chi2.rvs(size=n, df=df)
sigma_sq = df * scale / X
return sigma_sq
def fit(self, X, y):
# If polynomial transformation
if self.poly_degree:
X = polynomial_features(X, degree=self.poly_degree)
n_samples, n_features = np.shape(X)
X_X = X.T.dot(X)
# β的最小二乘法近似值
beta_hat = np.linalg.pinv(X_X).dot(X.T).dot(y)
# 后验参数可以通过分析来确定,因为我们假定似然的共轭先验。
# 正态先验/似然 => 正态后验
mu_n = np.linalg.pinv(X_X + self.omega0).dot(X_X.dot(beta_hat)+self.omega0.dot(self.mu0))
omega_n = X_X + self.omega0
# 缩放的逆卡方先验/似然 => 缩放的逆卡方后验
nu_n = self.nu0 + n_samples
sigma_sq_n = (1.0/nu_n)*(self.nu0*self.sigma_sq0 + \
(y.T.dot(y) + self.mu0.T.dot(self.omega0).dot(self.mu0) - mu_n.T.dot(omega_n.dot(mu_n))))
#模拟n_draws的参数值
beta_draws = np.empty((self.n_draws, n_features))
for i in range(self.n_draws):
sigma_sq = self._draw_scaled_inv_chi_sq(n=1, df=nu_n, scale=sigma_sq_n)
beta = multivariate_normal.rvs(size=1, mean=mu_n[:,0], cov=sigma_sq*np.linalg.pinv(omega_n))
# 保存参数的绘制
beta_draws[i, :] = beta
# 选择模拟变量的平均值作为用于预测的变量。
self.w = np.mean(beta_draws, axis=0)
# Lower and upper boundary of the credible interval
l_eti = 50 - self.cred_int/2
u_eti = 50 + self.cred_int/2
self.eti = np.array([[np.percentile(beta_draws[:,i], q=l_eti), np.percentile(beta_draws[:,i], q=u_eti)] \
for i in range(n_features)])
def predict(self, X, eti=False):
# 如果多项式变换
if self.poly_degree:
X = polynomial_features(X, degree=self.poly_degree)
y_pred = X.dot(self.w)
# 如果应该返回95%等尾区间的下限和上限
if eti:
lower_w = self.eti[:, 0]
upper_w = self.eti[:, 1]
y_lower_pred = X.dot(lower_w)
y_upper_pred = X.dot(upper_w)
return y_pred, y_lower_pred, y_upper_pred
return y_pred