二项式反演的公式: 若已知$f(n)=\sum_{i=0}^{n}(-1)^{i}C_{n}^{i}g_{i}$,则有:$g(n)=\sum_{i=0}^{n}(-1)^{i}C_{n}^{i}f(i)$ 一个更常见的公式: 已知$f(n)=\sum_{i=0}^{n}C_{n}^{i}g(i)$, Read More
posted @ 2019-06-19 20:32 lleozhang Views(191) Comments(0) Diggs(0) Edit
首先需要知道二项式反演的一个推论:$f(k)=\sum_{i=k}^{n}C_{i}^{k}g(i)$,则$g(k)=\sum_{i=k}^{n}(-1)^{i-k}C_{i}^{k}f(i)$ 然后我们考虑如果糖果多于药片的比药片多与糖果的多$k$个,那么糖果多于药片的个数应该为$\frac{n+ Read More
posted @ 2019-06-19 20:28 lleozhang Views(134) Comments(0) Diggs(0) Edit
留个位置 本题...一言难尽啊... 首先可以发现,恰好为$S$个的颜色数量为$M=min(\frac{n}{S},m)$ 首先我们设$g(i)$表示至少选了$i$种颜色达到恰好$S$个的方案数,那么$g(i)=C_{m}^{i}(m-i)^{n-iS}\frac{n!}{(S!)^{i}(n-iS Read More
posted @ 2019-06-19 18:25 lleozhang Views(196) Comments(0) Diggs(0) Edit
首先我们需要找出一个朴素的递推来解决这个问题: 设状态$f(i)$表示权值和为$i$的二叉树的数量,$g(i)$表示权值$i$是否在集合中,即$g(i)=[i\in S]$ 枚举根节点和左子树的权值,立刻得到一个递推: $f(n)=\sum_{i=0}^{n}g(i)\sum_{j=0}^{n-i} Read More
posted @ 2019-06-19 15:24 lleozhang Views(154) Comments(0) Diggs(0) Edit
这一版是mx发明的MTT 速度极快,精度基本有保证,在奇技淫巧无效时可以考虑这个东西... (但是无论如何我都不想用真正的任意模数NTT,那种东西简直毒瘤而且常常数巨大...) 原理:并不关心 Read More
posted @ 2019-06-19 13:50 lleozhang Views(277) Comments(0) Diggs(0) Edit
levels of contents