随笔分类 - 其他数学问题—二项式反演
摘要:这一篇是一个专题总结,可能会写很久,希望不会咕掉 一.组合数学: ①.基本公式: 1.排列数公式$A_{n}^{m}=\frac{n!}{(n-m)!}$,表示从$n$个元素中选出$m$个元素并进行全排列的方案数 特别的,当$m=n$时,有$A_{n}^{n}=n!$(规定$0!=1$) 2.组合数
阅读全文
摘要:二项式反演的公式: 若已知$f(n)=\sum_{i=0}^{n}(-1)^{i}C_{n}^{i}g_{i}$,则有:$g(n)=\sum_{i=0}^{n}(-1)^{i}C_{n}^{i}f(i)$ 一个更常见的公式: 已知$f(n)=\sum_{i=0}^{n}C_{n}^{i}g(i)$,
阅读全文
摘要:首先需要知道二项式反演的一个推论:$f(k)=\sum_{i=k}^{n}C_{i}^{k}g(i)$,则$g(k)=\sum_{i=k}^{n}(-1)^{i-k}C_{i}^{k}f(i)$ 然后我们考虑如果糖果多于药片的比药片多与糖果的多$k$个,那么糖果多于药片的个数应该为$\frac{n+
阅读全文
摘要:留个位置 本题...一言难尽啊... 首先可以发现,恰好为$S$个的颜色数量为$M=min(\frac{n}{S},m)$ 首先我们设$g(i)$表示至少选了$i$种颜色达到恰好$S$个的方案数,那么$g(i)=C_{m}^{i}(m-i)^{n-iS}\frac{n!}{(S!)^{i}(n-iS
阅读全文