Python数据分析之商品零售购物篮分析

  1 # -*- coding: utf-8 -*-
  2 
  3 # 代码8-1 查看数据特征
  4 
  5 import numpy as np
  6 import pandas as pd
  7 
  8 inputfile = '../data/GoodsOrder.csv'   # 输入的数据文件
  9 data = pd.read_csv(inputfile,encoding = 'gbk')  # 读取数据
 10 data .info()  # 查看数据属性
 11 
 12 data = data['id']
 13 description = [data.count(),data.min(), data.max()]  # 依次计算总数、最小值、最大值
 14 description = pd.DataFrame(description, index = ['Count','Min', 'Max']).T  # 将结果存入数据框
 15 print('描述性统计结果:\n',np.round(description))  # 输出结果
 16 
 17 
 18 
 19 # 代码8-2 分析热销商品
 20 
 21 # 销量排行前10商品的销量及其占比
 22 import pandas as pd
 23 inputfile = '../data/GoodsOrder.csv'  # 输入的数据文件
 24 data = pd.read_csv(inputfile,encoding = 'gbk')  # 读取数据
 25 group = data.groupby(['Goods']).count().reset_index()  # 对商品进行分类汇总
 26 sorted=group.sort_values('id',ascending=False)
 27 print('销量排行前10商品的销量:\n', sorted[:10])  # 排序并查看前10位热销商品
 28 
 29 # 画条形图展示出销量排行前10商品的销量
 30 import matplotlib.pyplot as plt
 31 x=sorted[:10]['Goods']
 32 y=sorted[:10]['id']
 33 plt.figure(figsize = (8, 4))  # 设置画布大小 
 34 plt.barh(x,y)
 35 plt.rcParams['font.sans-serif'] = 'SimHei'
 36 plt.xlabel('销量')  # 设置x轴标题
 37 plt.ylabel('商品类别')  # 设置y轴标题
 38 plt.title('商品的销量TOP10')  # 设置标题
 39 plt.savefig('../tmp/top10.png')  # 把图片以.png格式保存
 40 plt.show()  # 展示图片
 41 
 42 # 销量排行前10商品的销量占比
 43 data_nums = data.shape[0]
 44 for idnex, row in sorted[:10].iterrows():
 45     print(row['Goods'],row['id'],row['id']/data_nums)
 46 
 47 
 48     
 49     
 50 # 代码8-3 各类别商品的销量及其占比
 51 
 52 import pandas as pd
 53 inputfile1 = '../data/GoodsOrder.csv'
 54 inputfile2 = '../data/GoodsTypes.csv'
 55 data = pd.read_csv(inputfile1,encoding = 'gbk')
 56 types = pd.read_csv(inputfile2,encoding = 'gbk')  # 读入数据
 57 
 58 group = data.groupby(['Goods']).count().reset_index()
 59 sort = group.sort_values('id',ascending = False).reset_index()
 60 data_nums = data.shape[0]  # 总量
 61 del sort['index']
 62 
 63 sort_links = pd.merge(sort,types)  # 合并两个datafreame 根据type
 64 # 根据类别求和,每个商品类别的总量,并排序
 65 sort_link = sort_links.groupby(['Types']).sum().reset_index()
 66 sort_link = sort_link.sort_values('id',ascending = False).reset_index()
 67 del sort_link['index']  # 删除“index”列
 68 
 69 # 求百分比,然后更换列名,最后输出到文件
 70 sort_link['count'] = sort_link.apply(lambda line: line['id']/data_nums,axis=1)
 71 sort_link.rename(columns = {'count':'percent'},inplace = True)
 72 print('各类别商品的销量及其占比:\n',sort_link)
 73 outfile1 = '../tmp/percent.csv'
 74 sort_link.to_csv(outfile1,index = False,header = True,encoding='gbk')  # 保存结果
 75 
 76 # 画饼图展示每类商品销量占比
 77 import matplotlib.pyplot as plt
 78 data = sort_link['percent']
 79 labels = sort_link['Types']
 80 plt.figure(figsize=(8, 6))  # 设置画布大小   
 81 plt.pie(data,labels=labels,autopct='%1.2f%%')
 82 plt.rcParams['font.sans-serif'] = 'SimHei'
 83 plt.title('每类商品销量占比')  # 设置标题
 84 plt.savefig('../tmp/persent.png')  # 把图片以.png格式保存
 85 plt.show()
 86 
 87 
 88 
 89 # 代码8-4 非酒精饮料内部商品的销量及其占比
 90 
 91 # 先筛选“非酒精饮料”类型的商品,然后求百分比,然后输出结果到文件。
 92 selected = sort_links.loc[sort_links['Types'] == '非酒精饮料']  # 挑选商品类别为“非酒精饮料”并排序
 93 child_nums = selected['id'].sum()  # 对所有的“非酒精饮料”求和
 94 selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)  # 求百分比
 95 selected.rename(columns = {'id':'count'},inplace = True)
 96 print('非酒精饮料内部商品的销量及其占比:\n',selected)
 97 outfile2 = '../tmp/child_percent.csv'
 98 sort_link.to_csv(outfile2,index = False,header = True,encoding='gbk')  # 输出结果
 99 
100 # 画饼图展示非酒精饮品内部各商品的销量占比
101 import matplotlib.pyplot as plt
102 data = selected['child_percent']
103 labels = selected['Goods']
104 plt.figure(figsize = (8,6))  # 设置画布大小 
105 explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3)  # 设置每一块分割出的间隙大小
106 plt.pie(data,explode = explode,labels = labels,autopct = '%1.2f%%',
107         pctdistance = 1.1,labeldistance = 1.2)
108 plt.rcParams['font.sans-serif'] = 'SimHei'
109 plt.title("非酒精饮料内部各商品的销量占比")  # 设置标题
110 plt.axis('equal')
111 plt.savefig('../tmp/child_persent.png')  # 保存图形
112 plt.show()  # 展示图形

 

 

 

 

 

posted @ 2023-03-15 10:40  苒若  阅读(247)  评论(0)    收藏  举报