优化 [Test, 动态规划]

优化


Description\mathcal{Description}

给定长度为 NN 的序列 {ai}\{a_i\}, 从中选出 KK不相交区间, 从左到右记它们的和为 s1,s2...sns_1, s_2...s_n,
请最大化下述合式
i=1k1sisi+1\sum_{i=1}^{k-1} s_i-s_{i+1}

N<=3104, K<=min(N,200)N<=3*10^4,\ K <= min(N, 200)


Solution\mathcal{Solution}

F[i,j,k]设 F[i, j, k] 表示前 ii 个数, 组成 jj 个区间, (k=0,1,2,3)(k =0,1,2,3) 的最优值

k=0k = 0 表示 选择ii 个数, Ai1>=Ai<=Ai+1A_{i-1} >= A_i <= A_i+1, 最优值,
k=1k = 1 表示 选择或不选择ii 个数, Ai1>=Ai<=Ai+1A_{i-1} >= A_i<=A_i+1, 最优值,
0,10, 1 表示当前数比两边都小时的情况, 只会对答案造成 负贡献.

k=2k = 2 表示 选择ii 个数, Ai1<=Ai>=Ai+1A_{i-1} <= A_i >= A_{i+1}, 最优值,
k=3k = 3 表示 选择或不选择ii 个数, Ai1<=Ai>=Ai+1A_{i-1} <= A_i >= A_{i+1} , 最优值.
2,32, 3 表示当前数比两边都大时的情况, 只会对答案造成 正贡献.

flag=2(j==1    j==K)flag =2 - (j==1\ \ ||\ \ j==K)
F[i,j,0]=max(F[i1,j,0],F[i1,j1,3])flagAi F[i,j,1]=max(F[i,j,0],F[i1,j,1]) F[i,j,2]=max(F[i1,j,2],F[i1,j1,1])+flagAi F[i,j,3]=max(F[i,j,2],F[i1,j,3])  F[i, j, 0] = max(F[i-1,j,0], F[i-1, j-1,3]) - flag*A_i\\ \ \\ F[i,j,1] = max(F[i,j,0], F[i-1,j,1]) \\ \ \\ F[i,j,2] = max(F[i-1,j,2],F[i-1,j-1,1]) + flag*A_i\\ \ \\ F[i,j,3] = max(F[i,j,2], F[i-1,j,3]) \ \\ \ \\

(flag>1)F[i,j,1]=max(F[i,j,1],F[i1,j1,1])F[i,j,3]=max(F[i,j,3],F[i1,j1,3]) F[i,j,1] = max(F[i,j,1],F[i-1,j-1,1]) \\ \tag{flag>1} F[i,j,3]=max(F[i,j,3], F[i-1,j-1,3])

紫色部分为 状态的继承


Code\mathcal{Code}

stdstd

#include<bits/stdc++.h>
using namespace std;
#define ll long long 
#define reg register int 
#define rep(i, a, b) for (reg i = a; i <= b; i++) 

const int INF = 1e9, N = 30005, K = 205; 
const double eps = 1e-6, phi = acos(-1.0); 
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;} 
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar(); if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}

int f[N][K][4];
int main() {
    freopen("optimization.in", "r", stdin);
    freopen("optimization.out", "w", stdout);
	int n = read(), k = read();
	rep(i, 1, k) rep(j, 0, 3) f[0][i][j] = -INF;
	rep(i, 1, n) {   
		int x = read();
		rep(j, 1, k) {             
			int flag = 2 - (j == 1 || j == k);
			f[i][j][0] = max(f[i - 1][j][0], f[i - 1][j - 1][3]) - flag * x;//low 
			f[i][j][1] = max(f[i - 1][j][1], f[i][j][0]);//

			f[i][j][2] = max(f[i - 1][j][2], f[i - 1][j - 1][1]) + flag * x;//high
			f[i][j][3] = max(f[i - 1][j][3], f[i][j][2]);
			if (flag - 1) {
				f[i][j][1] = max(f[i][j][1], f[i - 1][j - 1][1]);
				f[i][j][3] = max(f[i][j][3], f[i - 1][j - 1][3]);
			}
		}
	}
	printf("%d\n", max(f[n][k][1], f[n][k][3]));
}

posted @ 2019-06-15 22:04  XXX_Zbr  阅读(146)  评论(0)    收藏  举报