实验二 K-近邻算法及应用

博客班级 https://edu.cnblogs.com/campus/ahgc/machinelearning
作业要求 https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12004
作业目标 <K-近邻算法及应用 >
学号 <3180701107>

一、实验目的

理解K-近邻算法原理,能实现算法K近邻算法;
掌握常见的距离度量方法;
掌握K近邻树实现算法;
针对特定应用场景及数据,能应用K近邻解决实际问题。

二、实验内容

实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
实现K近邻树算法;
针对iris数据集,应用sklearn的K近邻算法进行类别预测。
针对iris数据集,编制程序使用K近邻树进行类别预测。

三、实验报告要求

对照实验内容,撰写实验过程、算法及测试结果;
代码规范化:命名规则、注释;
分析核心算法的复杂度;
查阅文献,讨论K近邻的优缺点;
举例说明K近邻的应用场景。

四、实验内容及结果

实验代码及截图
1.

import math
from itertools import combinations

def L(x, y, p=2):
 # x1 = [1, 1], x2 = [5,1]
 if len(x) == len(y) and len(x) > 1:
 sum = 0
 for i in range(len(x)):
 sum += math.pow(abs(x[i] - y[i]), p)
 return math.pow(sum, 1/p)
 else:
 return 0

 课本例3.1
x1 = [1, 1]
x2 = [5, 1]
x3 = [4, 4]

# x1, x2
for i in range(1, 5):
 r = { '1-{}'.format(c):L(x1, c, p=i) for c in [x2, x3]}
 print(min(zip(r.values(), r.keys())))

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter

# data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
# data = np.array(df.iloc[:100, [0, 1, -1]]

df



plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

data = np.array(df.iloc[:100, [0, 1, -1]])
X, y = data[:,:-1], data[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

class KNN:
 def __init__(self, X_train, y_train, n_neighbors=3, p=2):
 """
 parameter: n_neighbors 临近点个数
 parameter: p 距离度量
 """
 self.n = n_neighbors
 self.p = p
 self.X_train = X_train
 self.y_train = y_train
 
 def predict(self, X):
 # 取出n个点
 knn_list = []
 for i in range(self.n):
 dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
 knn_list.append((dist, self.y_train[i]))
 
 for i in range(self.n, len(self.X_train)):
 max_index = knn_list.index(max(knn_list, key=lambda x: x[0]))
 dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
 if knn_list[max_index][0] > dist:
 knn_list[max_index] = (dist, self.y_train[i])
 
 # 统计
 knn = [k[-1] for k in knn_list]
 count_pairs = Counter(knn)
 max_count = sorted(count_pairs, key=lambda x:x)[-1]
 return max_count
 
 def score(self, X_test, y_test):
 right_count = 0
 n = 10
 for X, y in zip(X_test, y_test):
 label = self.predict(X)
 if label == y:
 right_count += 1
 return right_count / len(X_test)

clf = KNN(X_train, y_train)

clf.score(X_test, y_test)

test_point = [6.0, 3.0]
print('Test Point: {}'.format(clf.predict(test_point)))

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.plot(test_point[0], test_point[1], 'bo', label='test_point')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

from sklearn.neighbors import KNeighborsClassifier

clf_sk = KNeighborsClassifier()
clf_sk.fit(X_train, y_train)

clf_sk.score(X_test, y_test)

# kd-tree每个结点中主要包含的数据结构如下
class KdNode(object):
 def __init__(self, dom_elt, split, left, right):
 self.dom_elt = dom_elt # k维向量节点(k维空间中的一个样本点)
 self.split = split # 整数(进行分割维度的序号)
 self.left = left # 该结点分割超平面左子空间构成的kd-tree
 self.right = right # 该结点分割超平面右子空间构成的kd-tree
class KdTree(object):
 def __init__(self, data):
 k = len(data[0]) # 数据维度
 
 def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode
 if not data_set: # 数据集为空
 return None
 # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
 # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象
 #data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
 data_set.sort(key=lambda x: x[split])
 split_pos = len(data_set) // 2 # //为Python中的整数除法
 median = data_set[split_pos] # 中位数分割点 
 split_next = (split + 1) % k # cycle coordinates
 
 # 递归的创建kd树
 return KdNode(median, split, 
 CreateNode(split_next, data_set[:split_pos]), # 创建左子树
 CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树
 
 self.root = CreateNode(0, data) # 从第0维分量开始构建kd树,返回根节点
# KDTree的前序遍历
def preorder(root): 
 print (root.dom_elt) 
 if root.left: # 节点不为空
 preorder(root.left) 
 if root.right: 
 preorder(root.right) 

# 对构建好的kd树进行搜索,寻找与目标点最近的样本点:
from math import sqrt
from collections import namedtuple
# 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited")
 
def find_nearest(tree, point):
 k = len(point) # 数据维度
 def travel(kd_node, target, max_dist):
 if kd_node is None: 
 return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负
 nodes_visited = 1
 
 s = kd_node.split # 进行分割的维度
 pivot = kd_node.dom_elt # 进行分割的“轴”
 
 if target[s] <= pivot[s]: # 如果目标点第s维小于分割轴的对应值(目标离左子树更近)
 nearer_node = kd_node.left # 下一个访问节点为左子树根节点
 further_node = kd_node.right # 同时记录下右子树
 else: # 目标离右子树更近
 nearer_node = kd_node.right # 下一个访问节点为右子树根节点
 further_node = kd_node.left
 temp1 = travel(nearer_node, target, max_dist) # 进行遍历找到包含目标点的区域
 
 nearest = temp1.nearest_point # 以此叶结点作为“当前最近点”
 dist = temp1.nearest_dist # 更新最近距离
 
 nodes_visited += temp1.nodes_visited 
 if dist < max_dist: 
 max_dist = dist # 最近点将在以目标点为球心,max_dist为半径的超球体内
 
 temp_dist = abs(pivot[s] - target[s]) # 第s维上目标点与分割超平面的距离
 if max_dist < temp_dist: # 判断超球体是否与超平面相交
 return result(nearest, dist, nodes_visited) # 不相交则可以直接返回,不用继续判断
 
 #---------------------------------------------------------------------- 
 # 计算目标点与分割点的欧氏距离 
 temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target))) 
 
 if temp_dist < dist: # 如果“更近”
 nearest = pivot # 更新最近点
 dist = temp_dist # 更新最近距离
 max_dist = dist # 更新超球体半径
 
 # 检查另一个子结点对应的区域是否有更近的点
 temp2 = travel(further_node, target, max_dist) 
 
 nodes_visited += temp2.nodes_visited
 if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离
 nearest = temp2.nearest_point # 更新最近点
 dist = temp2.nearest_dist # 更新最近距离
 return result(nearest, dist, nodes_visited)
 return travel(tree.root, point, float("inf")) # 从根节点开始递归

data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
kd = KdTree(data)
preorder(kd.root)

from time import clock
from random import random
# 产生一个k维随机向量,每维分量值在0~1之间
def random_point(k):
 return [random() for _ in range(k)]
# 产生n个k维随机向量
def random_points(k, n):
 return [random_point(k) for _ in range(n)] 

ret = find_nearest(kd, [3,4.5])
print (ret)

N = 400000
t0 = clock()
kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点
t1 = clock()
print ("time: ",t1-t0, "s")
print (ret2)

五、实验小结

K近邻算法优缺点:
算法优点:
(1)简单,易于理解,易于实现,无需估计参数。
(2)训练时间为零。它没有显示的训练,不像其它有监督的算法会用训练集train一个模型(也就是拟合一个函数),然后验证集或测试集用该模型分类。KNN只是把样本保存起来,收到测试数据时再处理,所以KNN训练时间为零。
(3)KNN可以处理分类问题,同时天然可以处理多分类问题,适合对稀有事件进行分类。
(4)特别适合于多分类问题(multi-modal,对象具有多个类别标签), KNN比SVM的表现要好。
(5)KNN还可以处理回归问题,也就是预测。
(6)和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感。
算法缺点:
(1)计算量太大,尤其是特征数非常多的时候。每一个待分类文本都要计算它到全体已知样本的距离,才能得到它的第K个最近邻点。
(2)可理解性差,无法给出像决策树那样的规则。
(3)是慵懒散学习方法,基本上不学习,导致预测时速度比起逻辑回归之类的算法慢。
(4)样本不平衡的时候,对稀有类别的预测准确率低。当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。(5)对训练数据依赖度特别大,对训练数据的容错性太差。如果训练数据集中,有一两个数据是错误的,刚刚好又在需要分类的数值的旁边,这样就会直接导致预测的数据的不准确。

K近邻算法的应用场景:
k近邻算法应该是目前工业上还会使用最为简单的算法,并且使用起来也很简单、方便,但是有个前提是数据量不能过大,更不能使用有维数诅咒的数据集。

posted @ 2021-05-21 14:50  朱晓龙  阅读(123)  评论(0编辑  收藏  举报