计算图像数据集RGB各通道的均值和方差(转载)
计算图像数据集RGB各通道的均值和方差
第一种写法,先读进来,再计算。比较耗内存。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
import cv2 import numpy as np import torch startt = 700 CNum = 100 # 挑选多少图片进行计算 imgs = [] for i in range (startt, startt + CNum): img_path = os.path.join(root_path, filename[i]) img = cv2.imread(img_path) img = img[:, :, :, np.newaxis] imgs.append(torch.Tensor(img)) torch_imgs = torch.cat(imgs, dim = 3 ) means, stdevs = [], [] for i in range ( 3 ): pixels = torch_imgs[:, :, i, :] # 拉成一行 means.append(torch.mean(pixels)) stdevs.append(torch.std(pixels)) # cv2 读取的图像格式为BGR,PIL/Skimage读取到的都是RGB不用转 means.reverse() # BGR --> RGB stdevs.reverse() print ( "normMean = {}" . format (means)) print ( "normStd = {}" . format (stdevs)) |
第二种写法,读一张算一张,比较耗时:先过一遍计算出均值,再过一遍计算出方差。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
import os from PIL import Image import matplotlib.pyplot as plt import numpy as np from scipy.misc import imread startt = 4000 CNum = 1000 # 挑选多少图片进行计算 num = 1000 * 3200 * 1800 # 这里(3200,1800)是每幅图片的大小,所有图片尺寸都一样 imgs = [] R_channel = 0 G_channel = 0 B_channel = 0 for i in range (startt, startt + CNum): img = imread(os.path.join(root_path, filename[i])) R_channel = R_channel + np. sum (img[:, :, 0 ]) G_channel = G_channel + np. sum (img[:, :, 1 ]) B_channel = B_channel + np. sum (img[:, :, 2 ]) R_mean = R_channel / num G_mean = G_channel / num B_mean = B_channel / num R_channel = 0 G_channel = 0 B_channel = 0 for i in range (startt, startt + CNum): img = imread(os.path.join(root_path, filename[i])) R_channel = R_channel + np. sum (np.power(img[:, :, 0 ] - R_mean, 2 ) ) G_channel = G_channel + np. sum (np.power(img[:, :, 1 ] - G_mean, 2 ) ) B_channel = B_channel + np. sum (np.power(img[:, :, 2 ] - B_mean, 2 ) ) R_std = np.sqrt(R_channel / num) G_std = np.sqrt(G_channel / num) B_std = np.sqrt(B_channel / num) # R:65.045966 G:70.3931815 B:78.0636285 print ( "R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean)) print ( "R_std is %f, G_std is %f, B_std is %f" % (R_std, G_std, B_std)) |
第三种写法,只需要遍历一次:在一轮循环中计算出x,x^2; 然后x'=sum(x)/N ,又有sum(x^2),根据下式:
S^2
= sum((x-x')^2 )/N = sum(x^2+x'^2-2xx')/N
= {sum(x^2) + sum(x'^2) - 2x'*sum(x) }/N
= {sum(x^2) + N*(x'^2) - 2x'*(N*x') }/N
= {sum(x^2) - N*(x'^2) }/N
= sum(x^2)/N - x'^2
S = sqrt( sum(x^2)/N - (sum(x)/N )^2 )
可以知道,只需要经过一次遍历,就可以计算出数据集的均值和方差。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
import os from PIL import Image import matplotlib.pyplot as plt import numpy as np from scipy.misc import imread startt = 5000 CNum = 1000 # 挑选多少图片进行计算 R_channel = 0 G_channel = 0 B_channel = 0 R_channel_square = 0 G_channel_square = 0 B_channel_square = 0 pixels_num = 0 imgs = [] for i in range (startt, startt + CNum): img = imread(os.path.join(root_path, filename[i])) h, w, _ = img.shape pixels_num + = h * w # 统计单个通道的像素数量 R_temp = img[:, :, 0 ] R_channel + = np. sum (R_temp) R_channel_square + = np. sum (np.power(R_temp, 2.0 )) G_temp = img[:, :, 1 ] G_channel + = np. sum (G_temp) G_channel_square + = np. sum (np.power(G_temp, 2.0 )) B_temp = img[:, :, 2 ] B_channel = B_channel + np. sum (B_temp) B_channel_square + = np. sum (np.power(B_temp, 2.0 )) R_mean = R_channel / pixels_num G_mean = G_channel / pixels_num B_mean = B_channel / pixels_num """ S^2 = sum((x-x')^2 )/N = sum(x^2+x'^2-2xx')/N = {sum(x^2) + sum(x'^2) - 2x'*sum(x) }/N = {sum(x^2) + N*(x'^2) - 2x'*(N*x') }/N = {sum(x^2) - N*(x'^2) }/N = sum(x^2)/N - x'^2 """ R_std = np.sqrt(R_channel_square / pixels_num - R_mean * R_mean) G_std = np.sqrt(G_channel_square / pixels_num - G_mean * G_mean) B_std = np.sqrt(B_channel_square / pixels_num - B_mean * B_mean) print ( "R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean)) print ( "R_std is %f, G_std is %f, B_std is %f" % (R_std, G_std, B_std)) |