SPSR Log
/home/mmsys/anaconda3/envs/HWMNet/bin/python3.8 /media/mmsys/6f1091c9-4ed8-4a10-a03d-2acef144d2e1/SXY/otherCode/SPSR-master/train.py
export CUDA_VISIBLE_DEVICES=1
Path already exists. Rename it to [Exp/experiments/SPSR_archived_230605-154256]
23-06-05 15:42:56.395 - INFO: name: SPSR
use_tb_logger: True
model: spsr
scale: 4
gpu_ids: [1]
datasets:[
train:[
name: DIV2K
mode: LRHR
train_dataroot: /media/mmsys/6f1091c9-4ed8-4a10-a03d-2acef144d2e1/SXY/Data/LOL/LOL-v1/train
dataroot_HR: /media/mmsys/6f1091c9-4ed8-4a10-a03d-2acef144d2e1/SXY/Data/suntest/train/high
dataroot_LR: /media/mmsys/6f1091c9-4ed8-4a10-a03d-2acef144d2e1/SXY/Data/suntest/train/low
subset_file: None
use_shuffle: True
n_workers: 0
batch_size: 1
HR_size: 128
use_flip: True
use_rot: True
phase: train
scale: 4
data_type: img
]
val:[
name: v1
mode: LRHR
val_dataroot: /media/mmsys/6f1091c9-4ed8-4a10-a03d-2acef144d2e1/SXY/Data/LOL/LOL-v1/test
dataroot_HR: /media/mmsys/6f1091c9-4ed8-4a10-a03d-2acef144d2e1/SXY/Data/LOL/LOL-v1/test/high
dataroot_LR: /media/mmsys/6f1091c9-4ed8-4a10-a03d-2acef144d2e1/SXY/Data/LOL/LOL-v1/test/low
phase: val
scale: 4
data_type: img
]
]
path:[
root: Exp
pretrain_model_G: None
experiments_root: Exp/experiments/SPSR
models: Exp/experiments/SPSR/models
training_state: Exp/experiments/SPSR/training_state
log: Exp/experiments/SPSR
val_images: Exp/experiments/SPSR/val_images
]
network_G:[
which_model_G: spsr_net
norm_type: None
mode: CNA
nf: 64
nb: 23
in_nc: 3
out_nc: 3
gc: 32
group: 1
scale: 4
]
network_D:[
which_model_D: discriminator_vgg_128
norm_type: batch
act_type: leakyrelu
mode: CNA
nf: 64
in_nc: 3
]
train:[
lr_G: 0.0001
lr_G_grad: 0.0001
weight_decay_G: 0
weight_decay_G_grad: 0
beta1_G: 0.9
beta1_G_grad: 0.9
lr_D: 0.0001
weight_decay_D: 0
beta1_D: 0.9
lr_scheme: MultiStepLR
lr_steps: [50000, 100000, 200000, 300000]
lr_gamma: 0.5
pixel_criterion: l1
pixel_weight: 0.01
feature_criterion: l1
feature_weight: 1
gan_type: vanilla
gan_weight: 0.005
gradient_pixel_weight: 0.01
gradient_gan_weight: 0.005
pixel_branch_criterion: l1
pixel_branch_weight: 0.5
Branch_pretrain: 1
Branch_init_iters: 5000
manual_seed: 9
niter: 242500
val_freq: 2
]
logger:[
print_freq: 100
save_checkpoint_freq: 5000.0
]
is_train: True
23-06-05 15:42:56.410 - INFO: Random seed: 9
23-06-05 15:42:56.412 - INFO: Dataset [LRHRDataset - DIV2K] is created.
23-06-05 15:42:56.412 - INFO: Number of train images: 485, iters: 485
23-06-05 15:42:56.412 - INFO: Total epochs needed: 500 for iters 242,500
23-06-05 15:42:56.412 - INFO: Dataset [LRHRDataset - v1] is created.
23-06-05 15:42:56.412 - INFO: Number of val images in [v1]: 15
23-06-05 15:42:56.581 - INFO: Initialization method [kaiming]
23-06-05 15:43:03.863 - INFO: Initialization method [kaiming]
23-06-05 15:43:04.367 - INFO: Initialization method [kaiming]
23-06-05 15:43:05.949 - WARNING: Params [module.get_g_nopadding.weight_h] will not optimize.
23-06-05 15:43:05.949 - WARNING: Params [module.get_g_nopadding.weight_v] will not optimize.
23-06-05 15:43:05.950 - INFO: Model [SPSRModel] is created.
23-06-05 15:43:05.950 - INFO: Start training from epoch: 0, iter: 0
/home/mmsys/anaconda3/envs/HWMNet/lib/python3.8/site-packages/torch/optim/lr_scheduler.py:416: UserWarning: To get the last learning rate computed by the scheduler, please use `get_last_lr()`.
warnings.warn("To get the last learning rate computed by the scheduler, "
23-06-05 15:47:56.184 - INFO: <epoch: 0, lr:1.000e-04>
23-06-05 15:48:18.096 - INFO: # epoch: 0 Validation # avg_PSNR: 3.1868e+00
23-06-05 15:53:04.440 - INFO: <epoch: 1, lr:1.000e-04>
23-06-05 15:57:53.871 - INFO: <epoch: 2, lr:1.000e-04>
23-06-05 15:58:14.686 - INFO: # epoch: 2 Validation # avg_PSNR: 3.1868e+00
23-06-05 16:03:04.067 - INFO: <epoch: 3, lr:1.000e-04>
23-06-05 16:07:51.074 - INFO: <epoch: 4, lr:1.000e-04>
23-06-05 16:08:12.135 - INFO: # epoch: 4 Validation # avg_PSNR: 3.1868e+00
export CUDA_VISIBLE_DEVICES=1
Path already exists. Rename it to [Exp/experiments/SPSR_archived_230605-154256]
23-06-05 15:42:56.395 - INFO: name: SPSR
use_tb_logger: True
model: spsr
scale: 4
gpu_ids: [1]
datasets:[
train:[
name: DIV2K
mode: LRHR
train_dataroot: /media/mmsys/6f1091c9-4ed8-4a10-a03d-2acef144d2e1/SXY/Data/LOL/LOL-v1/train
dataroot_HR: /media/mmsys/6f1091c9-4ed8-4a10-a03d-2acef144d2e1/SXY/Data/suntest/train/high
dataroot_LR: /media/mmsys/6f1091c9-4ed8-4a10-a03d-2acef144d2e1/SXY/Data/suntest/train/low
subset_file: None
use_shuffle: True
n_workers: 0
batch_size: 1
HR_size: 128
use_flip: True
use_rot: True
phase: train
scale: 4
data_type: img
]
val:[
name: v1
mode: LRHR
val_dataroot: /media/mmsys/6f1091c9-4ed8-4a10-a03d-2acef144d2e1/SXY/Data/LOL/LOL-v1/test
dataroot_HR: /media/mmsys/6f1091c9-4ed8-4a10-a03d-2acef144d2e1/SXY/Data/LOL/LOL-v1/test/high
dataroot_LR: /media/mmsys/6f1091c9-4ed8-4a10-a03d-2acef144d2e1/SXY/Data/LOL/LOL-v1/test/low
phase: val
scale: 4
data_type: img
]
]
path:[
root: Exp
pretrain_model_G: None
experiments_root: Exp/experiments/SPSR
models: Exp/experiments/SPSR/models
training_state: Exp/experiments/SPSR/training_state
log: Exp/experiments/SPSR
val_images: Exp/experiments/SPSR/val_images
]
network_G:[
which_model_G: spsr_net
norm_type: None
mode: CNA
nf: 64
nb: 23
in_nc: 3
out_nc: 3
gc: 32
group: 1
scale: 4
]
network_D:[
which_model_D: discriminator_vgg_128
norm_type: batch
act_type: leakyrelu
mode: CNA
nf: 64
in_nc: 3
]
train:[
lr_G: 0.0001
lr_G_grad: 0.0001
weight_decay_G: 0
weight_decay_G_grad: 0
beta1_G: 0.9
beta1_G_grad: 0.9
lr_D: 0.0001
weight_decay_D: 0
beta1_D: 0.9
lr_scheme: MultiStepLR
lr_steps: [50000, 100000, 200000, 300000]
lr_gamma: 0.5
pixel_criterion: l1
pixel_weight: 0.01
feature_criterion: l1
feature_weight: 1
gan_type: vanilla
gan_weight: 0.005
gradient_pixel_weight: 0.01
gradient_gan_weight: 0.005
pixel_branch_criterion: l1
pixel_branch_weight: 0.5
Branch_pretrain: 1
Branch_init_iters: 5000
manual_seed: 9
niter: 242500
val_freq: 2
]
logger:[
print_freq: 100
save_checkpoint_freq: 5000.0
]
is_train: True
23-06-05 15:42:56.410 - INFO: Random seed: 9
23-06-05 15:42:56.412 - INFO: Dataset [LRHRDataset - DIV2K] is created.
23-06-05 15:42:56.412 - INFO: Number of train images: 485, iters: 485
23-06-05 15:42:56.412 - INFO: Total epochs needed: 500 for iters 242,500
23-06-05 15:42:56.412 - INFO: Dataset [LRHRDataset - v1] is created.
23-06-05 15:42:56.412 - INFO: Number of val images in [v1]: 15
23-06-05 15:42:56.581 - INFO: Initialization method [kaiming]
23-06-05 15:43:03.863 - INFO: Initialization method [kaiming]
23-06-05 15:43:04.367 - INFO: Initialization method [kaiming]
23-06-05 15:43:05.949 - WARNING: Params [module.get_g_nopadding.weight_h] will not optimize.
23-06-05 15:43:05.949 - WARNING: Params [module.get_g_nopadding.weight_v] will not optimize.
23-06-05 15:43:05.950 - INFO: Model [SPSRModel] is created.
23-06-05 15:43:05.950 - INFO: Start training from epoch: 0, iter: 0
/home/mmsys/anaconda3/envs/HWMNet/lib/python3.8/site-packages/torch/optim/lr_scheduler.py:416: UserWarning: To get the last learning rate computed by the scheduler, please use `get_last_lr()`.
warnings.warn("To get the last learning rate computed by the scheduler, "
23-06-05 15:47:56.184 - INFO: <epoch: 0, lr:1.000e-04>
23-06-05 15:48:18.096 - INFO: # epoch: 0 Validation # avg_PSNR: 3.1868e+00
23-06-05 15:53:04.440 - INFO: <epoch: 1, lr:1.000e-04>
23-06-05 15:57:53.871 - INFO: <epoch: 2, lr:1.000e-04>
23-06-05 15:58:14.686 - INFO: # epoch: 2 Validation # avg_PSNR: 3.1868e+00
23-06-05 16:03:04.067 - INFO: <epoch: 3, lr:1.000e-04>
23-06-05 16:07:51.074 - INFO: <epoch: 4, lr:1.000e-04>
23-06-05 16:08:12.135 - INFO: # epoch: 4 Validation # avg_PSNR: 3.1868e+00