02 2018 档案
摘要:load citys_data.mat n = size(citys,1); D = zeros(n,n); for i = 1:n for j = 1:n if i ~= j D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2)); else ...
阅读全文
摘要:x = 1:0.01:2; y = sin(10*pi*x) ./ x; figure plot(x, y) title('绘制目标函数曲线图—Jason niu'); hold on c1 = 1.49445; c2 = 1.49445; maxgen = 50; sizepop = 10; Vmax = 0.5; Vmin = -0.5...
阅读全文
摘要:figure [x,y] = meshgrid(-5:0.1:5,-5:0.1:5); z = x.^2 + y.^2 - 10*cos(2*pi*x) - 10*cos(2*pi*y) + 20; mesh(x,y,z) hold on c1 = 1.49445; c2 = 1.49445; maxgen = 1000; sizepop = 100; Vmax = 1; ...
阅读全文
摘要:x = 1:0.01:2; y = sin(10*pi*x) ./ x; figure plot(x, y) title('绘制目标函数曲线图—Jason niu'); hold on c1 = 1.49445; c2 = 1.49445; maxgen = 50; sizepop = 10; Vmax = 0.5; Vmin = -0.5...
阅读全文
摘要:global p global t global R % 输入神经元个数,此处是6个 global S1 % 隐层神经元个数,此处是10个 global S2 % 输出神经元个数,此处是4个 global S % 连接权值个数+阈值个数即(6*10+10*4)+(10+4) S1 = 10; p = [0.01 0.01 0.00 0.90 0...
阅读全文
摘要:x = 0:0.01:10; y = x + 10*sin(5*x)+7*cos(4*x); figure plot(x, y) xlabel('independent variable') ylabel('dependent variable') title('GA:y = x + 10*sin(5*x) + 7*cos(4*x)利用算法求解最优解—Jason niu') initPo...
阅读全文
摘要:%RF:RF实现根据乳腺肿瘤特征向量高精度(better)预测肿瘤的是恶性还是良性 load data.mat a = randperm(569); Train = data(a(1:500),:); Test = data(a(501:end),:); P_train = Train(:,3:end); T_train = Train(:,2); P_test = Test(:,3:e...
阅读全文
摘要:%DT:DT实现根据乳腺肿瘤特征向量高精度预测肿瘤的是恶性还是良性 load data.mat a = randperm(569); Train = data(a(1:500),:); Test = data(a(501:end),:); P_train = Train(:,3:end); T_train = Train(:,2); P_test = Test(:,3:end); T_...
阅读全文
摘要:(1)导入数据:点击最左底部Import 按钮 (2)创建模型network_Jason_niu:点击底部的New按钮 (3)设置参数并训练:点击底部的Open按钮 (4)仿真预测: 大功告成!
阅读全文
摘要:load iris_data.mat P_train = []; T_train = []; P_test = []; T_test = []; for i = 1:3 temp_input = features((i-1)*50+1:i*50,:); temp_output = classes((i-1)*50+1:i*50,:); n = randperm(50)...
阅读全文
摘要:%ELM:ELM基于近红外光谱的汽油测试集辛烷值含量预测结果对比—Jason niu load spectra_data.mat temp = randperm(size(NIR,1)); P_train = NIR(temp(1:50),:)'; T_train = octane(temp(1:50),:)'; P_test = NIR(temp(51:end),:)'; T_test ...
阅读全文
摘要:load concrete_data.mat n = randperm(size(attributes,2)); p_train = attributes(:,n(1:80))'; t_train = strength(:,n(1:80))'; p_test = attributes(:,n(81:
阅读全文
摘要:load BreastTissue_data.mat n = randperm(size(matrix,1)); train_matrix = matrix(n(1:80),:); train_label = label(n(1:80),:); test_matrix = matrix(n(81:end),:); test_label = label(n(81:end),:);...
阅读全文
摘要:load water_data.mat attributes = mapminmax(attributes); P_train = attributes(:,1:35); T_train = classes(:,1:35); P_test = attributes(:,36:end); T_test = classes(:,36:end); net = newc(minmax(P_t...
阅读全文
摘要:load water_data.mat attributes = mapminmax(attributes); P_train = attributes(:,1:35); T_train = classes(:,1:35); P_test = attributes(:,36:end); T_test = classes(:,36:end); net = newsom(P_tr...
阅读全文
摘要:load iris_data.mat P_train = []; T_train = []; P_test = []; T_test = []; for i = 1:3 temp_input = features((i-1)*50+1:i*50,:); temp_output = classes((i-1)*50+1:i*50,:); n = randperm(...
阅读全文
摘要:load spectra_data.mat temp = randperm(size(NIR,1)); P_train = NIR(temp(1:50),:)'; T_train = octane(temp(1:50),:)'; P_test = NIR(temp(51:end),:)'; T_test = octane(temp(51:end),:)'; N = size(P_te...
阅读全文
摘要:load spectra_data.mat plot(NIR') title('Near infrared spectrum curve—Jason niu') temp = randperm(size(NIR,1)); P_train = NIR(temp(1:50),:)'; T_train = octane(temp(1:50),:)'; P_test = NIR(temp(5...
阅读全文

浙公网安备 33010602011771号