导航

~虚拟现实论文~

Posted on 2005-09-21 00:04  yunbo  阅读(7868)  评论(5编辑  收藏  举报
~虚拟现实论文~

虚 拟 现 实 & 视 景 仿 真 论 述

1、虚拟现实概念
   虚拟现实(Virtual Reality,简称VR),是一种基于可计算信息的沉浸式交互环境,具体地说,就是采用以计算机技术为核心的现代高科技生成逼真的视、听、触觉一体化的特定范围的虚拟环境,用户借助必要的设备以自然的方式与虚拟环境中的对象进行交互作用、相互影响,从而产生亲临等同真实环境的感受和体验。
   VR思想的起源可追溯到1965年Ivan Sutherland在IFIP会议上的《终极的显示》报告,而Virtual Reality一词是80年代初美国VPL公司的创建人之一Jaron Lanier提出来的。VR系统在若干领域的成功应用,导致了它在90年代的兴起。虚拟现实是高度发展的计算机技术在各种领域的应用过程中的结晶和反映,不仅包括图形学、图像处理、模式识别、网络技术、并行处理技术、人工智能等高性能计算技术,而且涉及数学、物理、通信,甚至与气象、地理、美学、心理学和社会学等相关。
  总的来说,实物虚化、虚物实化和高性能的计算处理技术是VR技术的3个主要方面。实物虚化是现实世界空间向多维信息化空间的一种映射,主要包括基本模型构建、空间跟踪、声音定位、视觉跟踪和视点感应等关键技术,这些技术使得真实感虚拟世界的生成、虚拟环境对用户操作的检测和操作数据的获取成为可能。它具体基于以下几种技术:(1)基本模型构建技术。它是应用计算机技术生成虚拟世界的基础,它将真实世界的对象物体在相应的3D虚拟世界中重构,并根据系统需求保存部分物理属性。例如车辆在柏油地、草地、沙地和泥地上行驶时情况会有所不同,或对气象数据进行建模生成虚拟环境的气象情况(阴天、晴天、雨、雾)等等。(2)空间跟踪技术。主要是通过头盔显示器、数据手套、数据衣等常用的交互设备上的空间传感器,确定用户的头、手、躯体或其他操作物在3D虚拟环境中的位置和方向。(3)声音跟踪技术:利用不同声源的声音到达某一特定地点的时间差、相位差、声压差等进行虚拟环境的声音跟踪。(4)视觉跟踪与视点感应技术。使用从视频摄像机到X-Y平面阵列、周围光或者跟踪光在图像投影平面不同时刻和不同位置上的投影,计算被跟踪对象的位置和方向。
  虚物实化是指确保用户从虚拟环境中获取同真实环境中一样或相似的视觉、听觉、力觉和触觉等感官认知的关键技术。能否让参与者产生沉浸感的关键因素除了视觉和听觉感知外,还有用户能否在操纵虚拟物体的同时,感受到虚拟物体的反作用力,从而产生触觉和力觉感知。力觉感知主要由计算机通过力反馈手套、力反馈操纵杆对手指产生运动阻尼从而使用户感受到作用力的方向和大小。触觉反馈主要是基于视觉、气压感、振动触感、电子触感和神经、肌肉模拟等方法来实现的。
  高性能计算处理技术主要包括数据转换和数据预处理技术;实时、逼真图形图像生成与显示技术;多种声音的合成与声音空间化技术;多维信息数据的融合、数据压缩以及数据库的生成;包括命令识别、语音识别,以及手势和人的面部表情信息的检测等在内的模式识别;分布式与并行计算,以及高速、大规模的远程网络技术。
  然而,不能把虚拟现实和模拟仿真混淆,两者是有一定区别的。概括地说,虚拟现实是模拟仿真在高性能计算机系统和信息处理环境下的发展和技术拓展。我们可以举一个烟尘干扰下能见度计算的例子来说明这个问题。在构建分布式虚拟环境基础信息平台应用过程中,经常会有由燃烧源产生的连续变化的烟尘干扰环境能见度的计算,从而影响环境的视觉效果、仿真实体的运行和决策。 某些仿真平台和图形图像生成系统也研究烟尘干扰下的能见度计算,仿真平台强调烟尘的准确物理模型、干扰后的能见度精确计算以及对仿真实体的影响程度;图形图像生成系统着重于建立细致的几何模型,估算光线穿过烟尘后的衰减。 而虚拟环境中烟尘干扰下的能见度计算,不但要考虑烟尘的物理特性,遵循烟尘运动的客观规律,计算影响仿真结果的相关数据,而且要生成用户能通过视觉感知的逼真图形效果,使用户在实时运行的虚拟现实系统中产生亲临等同真实环境的感受和体验。
2、分布式虚拟现实技术
   分布式虚拟现实可以看作是基于网络的虚拟现实系统,是可供多用户同时异地参与的分布式虚拟环境,处于不同地理位置的用户如同进入到同一个真实环境中,通过姿势、声音或文字等“在一起”进行交流、学习、训练、娱乐,甚至协同完成同一件复杂产品的设计或进行同一任务的演练。
  目前,分布式虚拟现实的研究基于两类网络平台。一是在Internet上,可追溯到早期基于文本的多参与者游戏MUD,还有基于VRML标准的远程虚拟购物等。虚拟现实建模语言是一种可以发布3D网页的跨平台语言,可提供一种更自然的体验方式,包括交互性、动态效果、延续性以及用户的参与探索。
  另一类则是在高速专用网上,如采用ATM技术的美国军方的国防仿真互联网。最早的分布式虚拟战场环境则是1983年美国陆军制定的虚拟环境研究计划,这一计划将分散在不同地点的地面坦克、车辆仿真器通过计算机网络联合在一起,进行各种复杂任务的训练和作战演练。从1994年开始,美国陆军与美国大西洋司令部联合开展了战争综合演练场的研究,建成了一个包括海陆空多兵种、有3700多个仿真实体参与的地域范围覆盖500公里×750公里的军事演练环境。
3、我国的虚拟现实现况
   VR技术是一项投资大、具有高难度的科技领域,和一些发达国家相比,我国还有一定的差距,但已引起我国政府有关部门和科学家们的高度重视。“九五”攻关计划、国家863计划、国家自然科学基金会等都把VR技术的研究列入了资助范围。我国军方对VR技术的发展关注较早,而且支持研究开发的力度也越来越大。
  我们国内的一些院校和科研单位,陆续开展了VR技术的研究,而且可喜的是,已经实现或正在研制的虚拟现实系统也有不少。像北京航空航天大学计算机系虚拟现实与可视化新技术研究室集成的分布式虚拟环境;浙江大学心理学国家重点实验室开发的虚拟故宫、CAD&CG国家重点实验室开发出桌面虚拟建筑环境实时漫游系统;清华大学计算机系对虚拟现实和临场感方面进行了研究,例如球面屏幕显示和图像随动、克服立体图闪烁的措施和深度感试验等方面都具有不少独特的方法;另外,西安交通大学、哈尔滨工业大学、国防科技大学、装甲兵工程学院、中科院软件所、上海交通大学等单位也进行了不同领域、不同方面的VR技术研究工作,并取得了一批研究成果。
  下面是北京航空航天大学虚拟现实与可视化技术研究室的专家对他们的VR研究成果所做的简单介绍。
   北航计算机系虚拟现实与可视化新技术研究室在国家863计划支持下,作为集成单位,与国防科技大学、浙江大学、装甲兵工程学院、中科院软件所和解放军测绘学院等单位一起建立了一个用于虚拟现实技术研究和应用的分布式虚拟环境基础信息平台,英文缩写为DVENET。DVENET由一个专用计算机网络以及支持分布式虚拟环境研究与应用的各种标准、开发工具和基础信息数据(如三维逼真地形)组成。基于DVENET,一个分布式虚拟战场环境被成功开发出来。目前,应用DVENET,可以实现包含远程的数十个武器虚拟平台在同一块逼真地形下进行协同作业或对抗演练。参演人员(即用户)可以通过不同的交互方式控制真实的或虚拟的武器仿真平台在虚拟战场环境中进行异地协同与对抗战术演练。总体上说,DVENET的技术水平已接近美国的STOW。
  除了DVENET以外,VR技术还向民用领域推广。“虚拟珠峰飞行漫游系统”就是给中国科学技术馆研制的,用户可以驾驶虚拟直升机飞越虚拟珠穆朗玛峰,以体验VR的魅力;我们还给房地产公司开发了室内外漫游系统,用户可以在虚拟房屋中漫游审视,以决定是否订购这种拟建房产。
   总的来说,虚拟现实是一个充满活力、具有巨大应用前景的高新技术领域,但仍存在许多有待解决与突破的问题。为了提高VR系统的交互性、逼真性和沉浸感,在新型传感和感知机理、几何与物理建模新方法、高性能计算,特别是高速图形图像处理,以及人工智能、心理学、社会学等方面都有许多具有挑战性的问题有待解决。但是我们坚信在这一高新技术领域我国肯定会有所作为的。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

                                   走近虚拟现实

“虚拟现实,什么呀?”咖啡猫皱着双眉嘟囔着。
 看着Jaffe博士远去的背影,一大串“?”浮现在咖啡猫的眼前。  
“咖啡猫,过来。”Jaffe博士冲着他笑笑,“来,坐这儿,戴上这个头盔、手套。”  
“博士,你干什么?”咖啡猫又惊又怕。
“带你去个好地方。”Jaffe博士狡黠地笑了笑。  
“哇塞,skyscrape,博士,这是在哪儿啊?”        
“几年后的这儿。”
“真想进去看看里面的装饰嗳!”
“没问题,Let's go!”
 咖啡猫迫不及待地推开门,东瞅瞅西看看,“不错不错,不过我喜欢把台灯放在书桌左侧。”
“你自己挪一下,不就行了吗?”
“好!”
 咖啡猫欢蹦乱跳地把家具搬来搬去,忙得不亦乐乎。重新布置过的房间充满了 个人气息,令人舒畅不已。  
“好了,咖啡猫,今天就到这儿了。”博士边说边帮他摘下头盔、手套。
 咖啡猫使劲地眨了眨眼睛,发现自己还是坐在椅子上,前面就一台电脑,傻了。
“这就是虚拟现实。”Jaffe博士又眨了眨眼睛,笑着走了。
“这到底是怎么回事?”看着博士的背影,眼前的“?”更大更多。“不行,我一定要把它弄个水落石出。”咖啡猫一脸的不服气。      
 说干就干。跑图书馆、上网查资料,一点不马虎。  
 噢,原来“虚拟现实(简称VR:Virtual Reality)”这个小baby1989年诞生于美国VRL Research Inc 公司的J.Lanier笔下,它通常是指用立体眼镜(见图)、传感手套等一系列传感辅助设施来实现的一种三维现实,人们通过这些设施以自然的方式(如头的转动、身体的运动等)向计算机送入各种动作信息,并且通过视觉、听觉以及触觉实施使人们得到三维的视觉、听觉及触觉等感觉世界。随着人们不同的动作信息,这些感觉也随之改变。咖啡猫托着腮帮子想了想:确实,那天他真的把台灯从右边挪到了左边,而且折腾了半天之后,他确实感觉自己胳臂酸酸的。
 小baby一开始是孤家寡人,满可怜的。不过近几年小家伙茁壮成长,家族也慢慢庞大,“人工现实”(Artificial Reality)、“虚拟环境”(Virtual Environment)、“赛伯空间”(Cyberspace)等都是他的亲兄弟。  
 咖啡猫还发现,事实上,虚拟现实技术不仅仅是指那些戴着头盔和手套的技术,而且还应该包括一切与之有关的具有自然模拟、逼真体验的技术与方法。小家伙来到这个世界的根本目的就是达到真实体验和基于自然技能的人机交互,能够达到或者部分达到这样目标的系统就称为虚拟现实系统。根据用户参与VR的不同形式以及沉浸的程度不同,可以把各种类型的虚拟现实技术划分四类:  
1.桌面虚拟现实
桌面虚拟现实利用个人计算机和低级工作站进行仿真,将计算机的屏幕作为用户观察虚拟境界的一个窗口。通过各种输入设备实现与虚拟现实世界的充分交互,这些外部设备包括鼠标,追踪球,力矩球等。它要求参与者使用输入设备,通过计算机屏幕观察360度范围内的虚拟境界,并操纵其中的物体,但这时参与者缺少完全的沉浸,因为它仍然会受到周围现实环境的干扰。桌面虚拟现实最大特点是缺乏真实的现实体验,但是成本也相对较低,因而,应用比较广泛。常见桌面虚拟现实技术有:基于静态图像的虚拟现实QuickTime VR、虚拟现实造型语言VRML、桌面三维虚拟现实、MUD等。
2.沉浸的虚拟现实
高级虚拟现实系统提供完全沉浸的体验,使用户有一种置身于虚拟境界之中的感觉。它利用头盔式显示器(见图)或其它设备,把参与者的视觉、听觉和其它感觉封闭起来,并提供一个新的、虚拟的感觉空间,并利用位置跟踪器、数据手套(见图)、其它手控输入设备、声音等使得参与者产生一种身临其境、全心投入和沉浸其中的感觉。常见的沉浸式系统有:基于头盔式显示器的系统、投影式虚拟现实系统、远程存在系统。
3.增强现实性的虚拟现实
增强现实性的虚拟现实不仅是利用虚拟现实技术来模拟现实世界、仿真现实世界,而且要利用它来增强参与者对真实环境的感受,也就是增强现实中无法感知或不方便的感受。典型的实例是战机飞行员的平视显示器,它可以将仪表读数和武器瞄准数据投射到安装在飞行员面前的穿透式屏幕上,它可以使飞行员不必低头读座舱中仪表的数据,从而可集中精力盯着敌人的飞机或导航偏差。
4.分布式虚拟现实
如果多个用户通过计算机网络连接在一起,同时参加一个虚拟空间,共同体验虚拟经历,那虚拟现实则提升到了一个更高的境界,这就是分布式虚拟现实系统。在分布式虚拟现实系统中,多个用户可通过网络对同一虚拟世界进行观察和操作,以达到协同工作的目的。目前最典型的分布式虚拟现实系统是SIMNET,SIMNET由坦克仿真器通过网络连接而成,用于部队的联合训练。通过SIMNET,位于德国的仿真器可以和位于美国的仿真器一样运行在同一个虚拟世界,参与同一场作战演习。  
咖啡猫看了这么一大段,有点不知所以然,什么跟什么嘛?好多好多术语都搞不明白。幸好有些图片可以大致地看看,先有个感性的认识再说,一些小细节以后再慢慢琢磨。
看来小baby已经长大了,他已经有自己的思想,正如一个充满幻想的少年,慢慢的有了自己的魅力。Burdea G.利索地用三个”I”来评价这位少年,即Immersion-Interaction-Imagination(沉浸-交互-构想)。  
沉浸感(Immersion) 使用者与计算机完全通过自然的交互方式,完全沉浸在计算机所营造的虚拟环境中。  
交互性(Interaction) 是VR系统区别于传统三维动画(Animation)的特征,使用者不再是被动地接受信息或者是旁观,而是能够使用交互输入设备操纵虚拟物体,改变虚拟世界。
想象(Imagination) 是指使用者利用VR系统可以从定性和定量综合集成的环境中得到感性和理性的认识从而深化概念和萌发新意。  
咖啡猫自言自语道:“小家伙天资聪慧,本事也够硬,不知他在我们这个花花世界中扮演的又是什么样的角色?据我目前所知,好像只在游戏中听到过“虚拟现实”这个词,噢,还有就是博士让我进“屋”参观,让我自己修改不满意的地方,估计这在商场上算得上是一个绝招吧!”
 
“My God!” 咖啡猫一翻资料惭愧地直想钻到老鼠洞里,“这么多东西我都不知道,太没面子了,这家伙的威力也真够不小啊!”一起来看看这家伙的本事,不由你不惊叹!
 
军事:1983年DARPA和美国陆军共同制定的SIMNET (SIMulator NETworking)研究计划,将分散在不同地点的地面坦克、车辆仿真器通过计算机网络联合在一起,进行各种复杂任务的训练和作战演练。这是VR技术最早的研究与应用的领域之一。
产品设计与性能评价:波音777由300万个零件组成,所有的设计在一个由数百台工作站组成的虚拟环境中进行。设计师戴上头盔显示器后,可以穿行于设计中的虚拟“飞机”,审视“飞机”的各项设计指标。
教育:将VR技术应用于教育可以使学生能够游览海底、遨游太空、观摩历史城堡,甚至深入原子内部观察电子的运动轨迹和体验爱因斯坦的相对论世界,从而更形象地获取知识,激发思维。
娱乐:第一个大规模的VR娱乐系统“BattleTech”,将每个“座舱”仿真器连网进行组之间的对抗,3D逼真视景、游戏杆、油门、刹车和受到打击时的晃动给用户很强的感官刺激。
VR还可以应用于高难度和危险环境下的作业训练。如医疗手术训练的VR系统,用CT或MRI数据在计算机中重构人体或某一器官的几何模型,并赋予一定的物理特征(例如密度、韧度、组织比例等),通过机械手或数据手套等高精度的交互工具在计算机中模拟手术过程,以达到训练、研究的目的。美国的NASA和欧洲空间局ESA曾成功地将VR技术应用于航天运载器的空间活动、空间站的操作和对哈勃太空望远镜维修方面的地面训练。  
“好家伙,本事还真不小。”咖啡猫真是服了它了。
“咦,不对啊,‘人无完人',它还处在发展初期,肯定还有许多不足和急需发展的地方,我来找找看。”  
要想这个小家伙能健康成长,就必须提高VR系统的交互性、逼真感和沉浸感,因为这是它的灵魂所在。为了达到这个目的,在新型传感和感知机理、几何与物理建模新方法、高性能计算,特别是高速图形图像处理,以及人工智能、心理学、社会学等方面都有许多挑战性的问题有待解决。
同时,解决因虚实结合而引起的生理和心理问题是建立和谐的人机环境的最后难点。  
例如,在以往的飞行模拟器中就存在一个长期未曾解决的现象,即模拟器晕眩症。无论是在简单的还是高级的飞行模拟器中,受训者都会或多或少地会产生一种类似动晕症的症状,严重时甚至影响到受训者在操作中的安全性。这种症状的表现是:眼睛疲劳、晕眩、头痛、恶心等。在某些情况下还会产生后效应,如短时间的迷失方向,或存在某种幻觉。引发模拟器晕眩症的原因是多种多样的,它的症状也是因人而异的。
另外,我们还不应该在虚拟现实系统中把本该使人发生晕眩的客观运动模拟成毫无异常的平稳运动,这也是不真实的表现。简而言之,一个逼真的虚拟现实系统,它的效果应该是针对某一特定的人,执行某一特定的任务而言,在实际的物理系统中该发生晕眩感的,则在虚拟现实系统中也应发生,在实际的物理系统中不该发生晕眩感的,则在虚拟现实系统中也不该发生。为此,必须解决一系列因虚实结合而引起的生理及心理问题,否则也很难建立起真正和谐的人机环境。
“哎,问题还是有那么一大箩筐的。革命尚未成功,同志仍需努力!”
 咖啡猫唰唰地写下他这几天的感受。  
“博士,作业,完成了,您看,行吗?”
“我先看看,” Jaffe博士笑了笑,“哦,还可以吗,了解了这么多啦,孺子可教也!”
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

                      虚拟现实技术在航天仿真研究中应用的探讨

虚拟现实 ( Virtual Reality,简称VR) 是一种可以创建和体验虚拟世界 (Virtual World) 的计算机系统。其中虚拟世界为全体虚拟环境(Virtual Environment)或给定仿真对象的全体,它是由计算机产生,通过视、听、 触觉等作用,使用户产生身临其境感觉的交互式视景仿真。因此,一个身临其境的虚拟现实系统是由包括计算机图形学、图像处理与模式识别、多传感器、语音处理与音像以及网络等技术所构成的大型综合集成环境。由于它是一门综合性极强的信息技术,目前已在军事、医学、设计和娱乐等领域得到了广泛应用。例如,波音公司曾利用VR技术进行虚拟座舱的布局,实现了完美的实际座舱布局设计。
   众所周知,航天飞行是一项耗资巨大、变量参数很多、非常复杂的系统工程,保证其安全、可靠是航天器设计时必须考虑的重要问题。因此,可利用仿真技术经济、安全及可重复性等特点,进行飞行任务或操作的模拟,以代替某些费时、费力、费钱的真实试验或者真实试验无法开展的场合,从而获得提高航天员工作效率或航天器系统可靠性等的设计对策。这样,航天仿真研究就成为确保航天器安全、可靠的有效技术途径。然而,大多数现有的仿真系统采用传统的仿真理论,即针对所研究的对象设计模型,然后根据实验方案在模型上进行各种实验,分析实验结果。其中设计的系统模型通常是由相互联系的数据结构集合和过程集合构成,具有一体化的信息和控制,因此很难对数据库进行修改。此外,实验结果的分析与处理也十分繁冗,同时,也不能直接对其作出解释。因而,随着仿真技术向可视化方向的发展,将VR技术与仿真理论相结合,据此进行航天仿真的研究,不失为一个行之有效的方法,本文对其展开讨论,以期有所裨益。
  一、意 义   
  虚拟现实技术的核心是通过计算机产生一种如同“身临其境”的具有动态、声像功能的三维空间环境,而且使操作者能够进入该环境,直接观测和参与该环境中事物的变化与相互作用。因此,将虚拟现实技术应用于航天仿真研究,不但可以使得该领域内的计算机仿真方法得到完善与发展,而且也将大大提高设计与试验的逼真性、实效性和经济性,具体表现在如下几个方面:
   1.人-机界面具有三维立体感,人融于系统,人机浑然一体。 以座舱仪表布局为例,原则上应把最重要且经常查看的仪表放在仪表板中心区域,次重要的仪表放在中心区域以外的地方。这样能减少航天员的眼动次数,降低负荷,同时也让其注意力落在重要仪表上。但究竟哪块仪表放在哪个精确的位置,以及相对距离是否合适,只有通过实验确定。因此利用VR 作为工具设计出相应具有立体感、 逼真性高的排列组合方案,再逐个进行试验,使被试处于其中,仿佛置身于真实的载人航天器座舱仪表板面前,就能达到理想客观的实验效果。
   2.继承了现有计算机仿真技术的优点,具有高度的灵活性。 因为它仅需通过修改软件中视景图像有关参数的设置,就可模拟现实世界中物理参数的改变,这样,随着任务的变化,已有的软件再经修改即可满足新任务的要求,所以十分灵活、方便。
   3.突破环境限制。现有航天仿真的计算机系统体现不了空间失重环境, 而建立虚拟现实系统,通过虚拟的景象和声响就可以使被试处于太空飞行中实际的载人航天器座舱中,据此展开的相应试验研究具有实际意义。
   4.节省研究经费。改用真实的航天器进行相应的试验研究是不可能实现的, 因为耗资巨大,经费条件不允许。而采用虚拟现实技术,由于其研制周期较短,设计修改和改型仅通过软件修改实现,可重复使用,设备损耗低,这样可大大节省经费投入。

美国航宇局各中心当前主要VR研究项目
单位名称
研究项目
 艾姆斯研究中心
虚拟/远程目标捕获作业中的头部随动滚转补偿;
虚拟环境中人的性能;虚拟环境中舱外活动自救;
遥控机器人计划与操作界面
 哥达德空间飞行中心
VR在地球和空间科学中的应用
 约翰逊航天中心
利用人工合成的工作环境进行工作负荷的评定;
舱外活动卫星捕获训练;空间站Cupola训练;
交会对接人控虚拟训练器
 马歇尔空间飞行中心
宏观工效学与可伸缩的用户人体测量学;
微观工效学虚拟及Fomecor模型; 微重
力运动与工效学
  长时间、远距离和多乘员的载人空间飞行将是21世纪航天技术发展的必然趋势,为了保证有良好的人(航天员)-机(载人航天器显示、控制系统)界面以提高航天员-载人航天器-空间环境这个大系统的可靠性和安全性,开展基于虚拟现实技术的航天仿真技术的研究,不但可以填补我国在此领域内的研究空白,而且也将为我国中、长期空间飞行的载人航天器(如空间站和空间实验室)型号任务的实施创造有利条件。

  二、研究现状
  1965年,美国麻省理工学院的科学家设计了一种头盔显示器,通过传感器和计算机仿真环境的相互作用,可以感觉到自己在几何图形中的移动,产生身临其境的感受,由此诞生了一种新的仿真手段虚拟现实技术。但由于其研制的头盔显示器性能较差,价格昂贵,很长时间内该项技术得不到应用。随着计算机图形学的发展,80年代中期,美国艾姆斯航天研究中心利用流行的液晶显示电视和其它设备开始研究低成本的虚拟现实系统,这对于虚拟现实技术的软、硬件研制发展推动很大。到了90年代,该项技术受到广泛关注并向实用迈进。例如美国马歇尔空间飞行中心研制载人航天器的VR座舱,指导座舱布局设计并训练航天员熟悉航天器的舱内布局、界面和位置关系,演练飞行程序。目前,美国各大航天中心已广泛地应用VR技术开展相应领域内的研究工作(如表所示)。在VR技术传入我国后,除几所院校建立一些初步的VR系统模型外,尚无在航天仿真领域展开此项技术的应用研究。
   一般而言,虚拟现实系统具有两大特点:可以从数据空间向外观察和被试可以沉浸到数据空间中。它是通过对研究对象的模型进行计算机仿真,由计算机结果去控制虚拟世界,并显示给被试,最终实现它们之间的交互作用。这样,将被试投入到虚拟环境中来真实地注视数据以进行交换,与现有的航天仿真方法相比有质的提高。
   基于上述过程,一个完整的虚拟现实航天仿真系统由下面三部分构成。
   1.虚拟环境产生器一个能产生三维世界的软、硬件环境是VR 系统的核心部件。它的主要功能是接收被试相关的运动信息(如头部、眼、手等),分路/ 分时生成左、右眼视图,并融合成三维立体图像,同时进行三维声音合成和发出触觉、压力等反馈信号。
   2.输入输出设备其目的是使被试能通过视觉、 听觉和触觉等方式与虚拟环境实现信息的交互作用。主要包括头盔显示器、操纵杆和数据手套等,它们是被试与虚拟环境建立联系的关键。
   3.数据接口其作用是将虚拟环境产生器、 输入输出设备以及被试等有机连接成一体,这不仅包括硬件协配问题,也包括软、硬件联调以及人机界面等技术内容。

  三、应用趋势
  纵观国外主要航天大国的研究,归纳起来,虚拟现实技术在航天仿真研究中应用的发展趋势是:
   1.航天员训练器利用虚拟训练系统对航天员进行失重心理训练, 使其建立失重环境下空间方位感。其次,通过构造航天器虚拟座舱模型,训练航天员熟悉舱内布局、界面和位置关系,演练飞行程序和操作技能等。还有,在航天器某些关键设备在轨运行期间发生故障时,为使航天员能正确进行在轨修理,可以通过虚拟现实技术,在地面或空间站对其进行修理培训。例如,1993年,美国约翰逊航天中心启用了一套虚拟现实系统来训练航天员熟悉太空环境,为修复哈勃望远镜作准备。航天员通过操作虚拟设备,大大提高了操作水平。
   2.航天工效学作为一种新型的人机界面,利用VR 系统可以更好地研究人与航天器之间的接口关系与功能分配,使舱内结构和布局更适合人的特性。此外,还可进行操作飞行程序和人机功能分配等合理性评价。
   3.交会对接人工控制虚拟仿真技术航天器的空间交会对接是发展载人航天事业的一项关键技术。其控制方式分为自动和人工控制两种,根据国外经验,人工控制在交会对接的最终逼近与对接过程中发挥非常重要的作用。目前现有的人工控制交会对接仿真系统是由计算机系统(包括数学模型)、运动模拟器、座舱(包括控制操作台)、视景系统、操作负载系统等五部分组成,其设备复杂、投资巨大。若采用虚拟现实技术,整个系统由计算机仿真、头盔显示器和数据手套三部分组成。即将交会对接动力学模型存入计算机系统,通过计算机仿真,实时地解出这两个航天器间的相对距离和姿态角参量,通过计算机生成图像,在头盔显示器里实时地显示两个航天器虚拟环境,此时航天员就像真正处在飞行空间进行交会对接操作一样。因而,这样建立的系统设备简单、投资少。另外,若需考虑空间环境因素(如失重、加速度等),可以把虚拟交会对接仿真器安置在离心机上或模拟失重的水池里,直接在航天员身上产生失重或加速度效应。这种具有空间环境效应的虚拟仿真器是现有仿真系统所没有的。因为采用通常技术的仿真器设备多、重量和体积大,一般是不可能实现空间环境效应的。
   4.航天环境控制与生命保障工程设计在航天服和环境生保系统的设计与研制中,可利用VR技术进行原理设计、逻辑验证及模型的仿真。设计者通过与设计的虚拟交互,不仅可及时观察到所设计部件的整体结构与外形,而且还能够及时改进设计中的原理或功能性缺陷,从而提高设计与研制效率。
   5.智能化的虚拟系统利用人工智能技术使计算机通过编程模仿人的思维过程,将与研究对象相关的专家知识纳入知识库,并根据这些知识进行推理,因而能解释用户的请求,确定必要的输入数据,修正或选择一个合适的模型进行实验,这样具有更强的仿真能力。
   6.交互方式的进一步发展创建虚拟现实工具包和模拟管理器, 让被试可以打开舱门、用手操纵开关等。而且还带有声音识别合成功能,能发出相应动作的声音,这样能使被试更加沉浸于虚拟世界中,提高仿真试验效果。

  四、关键技术
  根据上述应用前景,我们认为,建立一个完善实用的航天仿真虚拟现实系统,需要在以下四个方面取得突破:
   1.系统硬件如前所述,VR 技术的一个重要特点是通过仿真为被试提供一个虚构的但能反映对象变化的环境,这需要大量的数据处理。一般来说,人脑检测延迟的阈值约10ms,所以VR系统要求的延迟应低于10ms。因为延迟越长,系统越不逼真,延迟过长甚至产生负效应(如运动病)。另外,使用多边形越多,视景效果越真实,但是增加多边形,会使其延迟时间拉长。这样,视景生成对计算机硬件的速度要求更高。从目前技术看,要实现低于10ms的延时,处理器速度需达到90MIps(每秒百万条指令)。达到这一性能甚至更高一些是可能的,但成本昂贵。此外,为了得到高质量的图像,头盔显示器必须有50~100万个像素,因此,应着力研究分辨率高、体积小的显示器,以满足系统需要。
   2.环境生成工具构造虚拟现实环境要通过环境生成工具来实现。 计算机图像处理中智能性图形特征分析与推理及图形模块相互作用和处理,是虚拟现实技术的一个首要环节。目前这种环境生成工具专用性很强,尚不具有通用性。
   3.三维图像处理技术虚拟系统的视景环境由计算机通过三维图像处理用立体图像方式表现出来,同时根据研究要求和约束条件,完成实验所用的三维显示界面。它是根据数学和视觉原理用小多边形构造出来的。据估计,建立载人航天器和它的对接机构形状、再入状态与着陆场等逼真的虚拟环境,需要的图像生成速度为8000万个多边形/秒。这就要有专门的数学模型和仿真软件, 而这正是三维图像处理的主要内容。
   4.系统性能评价建立的航天仿真VR系统是否实用, 其中一个重要的评价指标是逼真度(即与所研究对象的吻合程度)。现有的评价方法包括两个方面:一是对系统进行测试,将结果与所研究对象的实际参数或数据进行比较;二是对仿真模型进行主观定性评价。对于VR系统,目前尚无有效手段客观评价其逼真度,多是依据主观定性评价。因此,发展客观检测方法进行评价也是亟待解决的重要问题。

  五、几点看法
  1.虚拟现实技术与现有仿真的区别在于, 被试不再是坐在现实世界中通过人机界面去观察分析研究对象的参数,而是沉浸到由计算机创造的一种虚拟世界之中,在这里面如同真实世界一样与周围的虚拟环境事物进行交互作用。因此,针对航天仿真技术的特点,建立虚拟系统,不但设备相对简单、投资少,而且可以真实地模拟空间效应,进而可作训练器,所以它是今后研究中值得推广和应用的技术。
   2.从整体水平看,国内在VR研究方面刚刚起步,与国外相比,存在很大差距。为此,我们应充分跟踪美国航宇局和欧空局在载人航天仿真研究中的VR动态,在可行的基础上建立一套虚拟现实仿真系统。另外,在设计视景软件时,应与国际仿真软件的发展趋势接轨。
   3.VR系统毕竟是一种虚拟化的事物,不同于真实世界。因此,如何平衡被试的心理负荷,避免操作失误以及焦虑、紧张等状态,让其将VR 技术真正作为一项实用的研究工具,提高工作效率,摆脱不必要的心理负担,这也是航天仿真虚拟现实技术应用中必不可少的一门课题。
   4.建立航天仿真用虚拟现实系统, 主要的硬件如图像生成计算机和头盔显示器等,由于技术发展速度很快,估计用不了几年时间它们的性能就难以满足研究要求了。为此我们应重点研究人-虚拟世界之间高速交互作用等问题。