Markdown数学公式
Markdown数学公式
| 符号 | 表达式 | 解释 |
|---|---|---|
| \(\sum\) | \sum | 求和公式 |
| \(\sum_{i=0}^n\) | \sum_{i=0}^n | 求和上下标 |
| \(y =\begin{cases} x\\ \alpha \end{cases}\) | y=/begin{cases} x\ \alpha \end | 大括号 |
| \(\times\) | \times | 乘号 |
| \(\pm\) | \pm | 正负号 |
| \(\div\) | \div | 除号 |
| \(\mid\) | \mid | 竖线 |
| \(\cdot\) | \cdot | 点 |
| \(\circ\) | \circ | 圈 |
| \(\ast\) | \ast | 星号 |
| \(\bigotimes\) | \bigotimes | 克罗内克积 |
| \(\bigoplus\) | \bigoplus | 异或 |
| \(\leq\) | \leq | 小于等于 |
| \(\geq\) | \geq | 大于等于 |
| \(\neq\) | \neq | 不等于 |
| \(\approx\) | \approx | 约等于 |
| \(\prod\) | \prod | N元乘积 |
| \(\coprod\) | \coprod | N元余积 |
| \(\cdots\) | \cdots | 省略号 |
| \(\int\) | \int | 积分 |
| \(\iint\) | \iint | 双重积分 |
| \(\oint\) | \oint | 曲线积分 |
| \(\infty\) | \infty | 无穷 |
| \(\nabla\) | \nabla | 梯度 |
| \(\because\) | \because | 因为 |
| \(\therefore\) | \therefore | 所以 |
| \(\forall\) | \forall | 任意 |
| \(\exists\) | \exists | 存在 |
| \(\not=\) | \not= | 不等于 |
| \(\not>\) | \not> | 不大于 |
| \(\leq\) | \leq | 小于等于 |
| \(\geq\) | \geq | 大于等于 |
| \(\not\subset\) | \not\subset | 不属于 |
| \(\emptyset\) | \emptyset | 空集 |
| \(\in\) | \in | 属于 |
| \(\notin\) | \notin | 不属于 |
| \(\subset\) | \subset | 子集 |
| \(\subseteq\) | \subseteq | 真子集 |
| \(\bigcup\) | \bigcup | 并集 |
| \(\bigcap\) | \bigcap | 交集 |
| \(\bigvee\) | \bigvee | 逻辑或 |
| \(\bigwedge\) | \bigwedge | 逻辑与 |
| \(\biguplus\) | \biguplus | 多重集 |
| \(\bigsqcup\) | \bigsqcup | |
| \(\hat{y}\) | \hat | 期望值 |
| \(\check{y}\) | \check | |
| \(\breve{y}\) | \breve | |
| \(\widetilde{y}\) | \widetilde | |
| \(\tilde{y}\) | \tilde | |
| \(\overline{y}\) | \overline | |
| \(\widehat{y}\) | \widehat | |
| \(\overline{a+b+c}\) | \overline | 平均值 |
| \(\underline{a+b+c}\) | \underline | |
| \(\overbrace{a+\underbrace{b+c}_{1.0}}^{2.0}\) | \overbrace{a+\underbrace{b+c}_{1.0}}^ | |
| \(\uparrow\) | \uparrow | 向上 |
| \(\downarrow\) | \downarrow | 向下 |
| \(\Uparrow\) | \Uparrow | |
| \(\Downarrow\) | \Downarrow | |
| \(\rightarrow\) | \rightarrow | 向右 |
| \(\leftarrow\) | \leftarrow | 向左 |
| \(\Rightarrow\) | \Rightarrow | 向右箭头 |
| \(\Longleftarrow\) | \Longleftarrow | 向左长箭头 |
| \(\longleftarrow\) | \longleftarrow | 向左单箭头 |
| \(\longrightarrow\) | \longrightarrow | 向右长箭头 |
| \(\Longrightarrow\) | \Longrightarrow | 向右箭头 |
| \(\alpha\) | \alpha | |
| \(\beta\) | \beta | |
| \(\gamma\) | \gamma | |
| \(\Gamma\) | \Gamma | |
| \(\delta\) | \delta | |
| \(\Delta\) | \Delta | |
| \(\epsilon\) | \epsilon | |
| \(\varepsilon\) | \varepsilon | |
| \(\zeta\) | \zeta | |
| \(\eta\) | \eta | |
| \(\theta\) | \theta | |
| \(\Theta\) | \Theta | |
| \(\vartheta\) | \vartheta | |
| \(\iota\) | \iota | |
| \(\pi\) | \pi | |
| \(\phi\) | \phi | |
| \(\psi\) | \psi | |
| \(\Psi\) | \Psi | |
| \(\omega\) | \omega | |
| \(\Omega\) | \Omega | |
| \(\chi\) | \chi | |
| \(\rho\) | \rho | |
| \(\omicron\) | \omicron | |
| \(\sigma\) | \sigma | |
| \(\Sigma\) | \Sigma | |
| \(\nu\) | \nu | |
| \(\xi\) | \xi | |
| \(\tau\) | \tau | |
| \(\lambda\) | \lambda | |
| \(\Lambda\) | \Lambda | |
| \(\mu\) | \mu | |
| \(\partial\) | \partial |

浙公网安备 33010602011771号