【原】Spark不同运行模式下资源分配源码解读

版权声明:本文为原创文章,未经允许不得转载。
复习内容:
Spark中Task的提交源码解读 http://www.cnblogs.com/yourarebest/p/5423906.html

SchedulerBackend是一个trait,它配合TaskSchedulerImpl共同完成Task调度、执行、资源的分配等。它的子类如下所示,不同的子类对应的不同Spark不同的资源分配调度。详见图1。

图1 SchedulerBackend子类继承图

Spark中不同(集群)模式进行资源的分配是通过调用backend.reviveOffers()方法来给Task分配资源的,其调度子类与其负责的运行模式如下所示:
LocalBackend
(1)本地单线程运行模式,master形如local
(2)本地多线程运行模式,匹配local[N]和Local[],
(3)匹配local[
, M]和local[N, M]
SparkDeploySchedulerBackend
(4)匹配Spark Standalone运行模式
(5)匹配local-cluster运行模式即伪分布模式
YarnClusterSchedulerBackend
(6)"yarn-standalone"或"yarn-cluster"运行模式,
(7)yarn-client运行模式
CoarseMesosSchedulerBackend(粗粒度)和MesosSchedulerBackend(细粒度)
(8)匹配Mesos运行模式,mesos有粗粒度和细粒度两种调度模式。
补充:细粒度模式目前仅支持Mesos。
粗粒度调度模式中,每个Executor在获得系统资源后,就长期拥有,直到应用程序退出才释放资源。优点:减少了资源调度的时间开销,缺点:所分配的资源被某个应用长期占有,造成资源的浪费。
细粒度调度模式中,资源是根据任务的需求动态调度的,任务完成后就还给Mesos,所以不存在资源浪费的问题,但调度延迟较大。

1.LocalBackend

调用远程的一个引用申请资源,该远程引用已在start方法中赋值

override def reviveOffers() {
localEndpoint.send(ReviveOffers)
}

LocalBackend收到远程的ReviveOffers消息在receive方法中进行消息的匹配,进行资源的分配,如下所示:

override def receive: PartialFunction[Any, Unit] = {
case ReviveOffers =>
reviveOffers()详见(1)
case StatusUpdate(taskId, state, serializedData) =>
scheduler.statusUpdate(taskId, state, serializedData)
if (TaskState.isFinished(state)) {
freeCores += scheduler.CPUS_PER_TASK
reviveOffers()
}
case KillTask(taskId, interruptThread) =>
executor.killTask(taskId, interruptThread)
}

(1)方法 reviveOffers()如下所示:

def reviveOffers() {
val offers = Seq(new WorkerOffer(localExecutorId, localExecutorHostname, freeCores))
for (task <- scheduler.resourceOffers(offers).flatten) {
freeCores -= scheduler.CPUS_PER_TASK
//在executor上创建Task
executor.launchTask(executorBackend, taskId = task.taskId, attemptNumber = task.attemptNumber,
task.name, task.serializedTask)
}
}

2.SparkDeploySchedulerBackend

由图1 SchedulerBackend子类继承我们知道SparkDeploySchedulerBackend是类CoarseGrainedSchedulerBackend的子类,属于粗粒度调度模式,类CoarseGrainedSchedulerBackend的子类的调度都是通过它的reviveOffers方法来完成的,因为都属于粗粒度调度模式。
远程引用申请资源

override def reviveOffers() {
driverEndpoint.send(ReviveOffers)
}

同样在receive方法匹配ReviveOffers 消息,调用方法 makeOffers()

override def receive: PartialFunction[Any, Unit] = {
case ReviveOffers =>
makeOffers()详见(1)

(1)makeOffers()方法如下所示

private def makeOffers() {
//过滤掉正在kill的executor
val activeExecutors = executorDataMap.filterKeys(!executorsPendingToRemove.contains(_))
val workOffers = activeExecutors.map { case (id, executorData) =>
new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
}.toSeq
//创建tasks
launchTasks(scheduler.resourceOffers(workOffers))详见(2)(3)
}

(2)scheduler.resourceOffers(workOffers)方法如下所示,TaskScheduleImpl调用提供slaves上的资源。我们通过按照激活的task set的优先级。我们以循环的方式将tasks均匀分配到节点上

def resourceOffers(offers: Seq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
var newExecAvail = false
//对于每一个Executor进行如下操作,主要进行slave的hostname与executor的映射
for (o <- offers) {
executorIdToHost(o.executorId) = o.host
activeExecutorIds += o.executorId
if (!executorsByHost.contains(o.host)) {
executorsByHost(o.host) = new HashSetString
executorAdded(o.executorId, o.host)
newExecAvail = true
}
for (rack <- getRackForHost(o.host)) {
hostsByRack.getOrElseUpdate(rack, new HashSetString) += o.host
}
}
//随机shuffle操作避免将tasks分配到同样的一批workers上
val shuffledOffers = Random.shuffle(offers)
// Build a list of tasks to assign to each worker.
val tasks = shuffledOffers.map(o => new ArrayBufferTaskDescription)
val availableCpus = shuffledOffers.map(o => o.cores).toArray
//根据调度策略获取TaskSetManage的调度顺序
val sortedTaskSets = rootPool.getSortedTaskSetQueue
for (taskSet <- sortedTaskSets) {
logDebug("parentName: %s, name: %s, runningTasks: %s".format(
taskSet.parent.name, taskSet.name, taskSet.runningTasks))
if (newExecAvail) {
taskSet.executorAdded()
}
}
//根据调度策略依次得到TaskSet,
//在节点上尝试5种Locality,PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
//以最快的速度执行task
var launchedTask = false
for (taskSet <- sortedTaskSets; maxLocality <- taskSet.myLocalityLevels) {
do {
launchedTask = resourceOfferSingleTaskSet(
taskSet, maxLocality, shuffledOffers, availableCpus, tasks)
} while (launchedTask)
}
if (tasks.size > 0) {
hasLaunchedTask = true
}
return tasks
}

(3)launchTasks方法如下所示

private def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
for (task <- tasks.flatten) {
//序列化task
val serializedTask = ser.serialize(task)
if (serializedTask.limit >= akkaFrameSize - AkkaUtils.reservedSizeBytes) {
scheduler.taskIdToTaskSetManager.get(task.taskId).foreach { taskSetMgr =>
try {
var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
"spark.akka.frameSize (%d bytes) - reserved (%d bytes). Consider increasing " +
"spark.akka.frameSize or using broadcast variables for large values."
msg = msg.format(task.taskId, task.index, serializedTask.limit, akkaFrameSize,
AkkaUtils.reservedSizeBytes)
taskSetMgr.abort(msg)
} catch {
case e: Exception => logError("Exception in error callback", e)
}
}
}
else {
val executorData = executorDataMap(task.executorId)
executorData.freeCores -= scheduler.CPUS_PER_TASK
//类CoarseGrainedExecutorBackend在Executor上反序列化task并完成task的创建
executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))
}
}
}

3.MesosSchedulerBackend

Mesos细粒度调度模式时通过Mesos中的类MesosSchedulerDriver来完成调度,有兴趣的读者可以看一下。这里就不介绍了

posted @ 2016-04-23 09:38  一路向前走  阅读(442)  评论(0编辑  收藏  举报