WordCount
> 需求: 在一堆给定的文本文件中统计输出每一个单词出现的总次数
##### Step 1. 数据格式准备
1. 创建一个新的文件
  ```shell
  cd /export/servers
  vim wordcount.txt
  ```
2. 向其中放入以下内容并保存
  ```text
  hello,world,hadoop
  hive,sqoop,flume,hello
  kitty,tom,jerry,world
  hadoop
  ```
3. 上传到 HDFS
  ```shell
  hdfs dfs -mkdir /wordcount/
  hdfs dfs -put wordcount.txt /wordcount/
  ```
##### Step 2. Mapper
```java
public class WordCountMapper extends Mapper<LongWritable,Text,Text,LongWritable> {
    @Override
    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String line = value.toString();
        String[] split = line.split(",");
        for (String word : split) {
            context.write(new Text(word),new LongWritable(1));
        }
    }
}
```
##### Step 3. Reducer
```java
public class WordCountReducer extends Reducer<Text,LongWritable,Text,LongWritable> {
    /**
     * 自定义我们的reduce逻辑
     * 所有的key都是我们的单词,所有的values都是我们单词出现的次数
     * @param key
     * @param values
     * @param context
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
        long count = 0;
        for (LongWritable value : values) {
            count += value.get();
        }
        context.write(key,new LongWritable(count));
    }
}
```
##### Step 4. 定义主类, 描述 Job 并提交 Job
```java
public class JobMain extends Configured implements Tool {
    @Override
    public int run(String[] args) throws Exception {
        Job job = Job.getInstance(super.getConf(), JobMain.class.getSimpleName());
        //打包到集群上面运行时候,必须要添加以下配置,指定程序的main函数
        job.setJarByClass(JobMain.class);
        //第一步:读取输入文件解析成key,value对
        job.setInputFormatClass(TextInputFormat.class);
        TextInputFormat.addInputPath(job,new Path("hdfs://192.168.52.250:8020/wordcount"));
        //第二步:设置我们的mapper类
        job.setMapperClass(WordCountMapper.class);
        //设置我们map阶段完成之后的输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
        //第三步,第四步,第五步,第六步,省略
        //第七步:设置我们的reduce类
        job.setReducerClass(WordCountReducer.class);
        //设置我们reduce阶段完成之后的输出类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);
        //第八步:设置输出类以及输出路径
        job.setOutputFormatClass(TextOutputFormat.class);
        TextOutputFormat.setOutputPath(job,new Path("hdfs://192.168.52.250:8020/wordcount_out"));
        boolean b = job.waitForCompletion(true);
        return b?0:1;
    }
    /**
     * 程序main函数的入口类
     * @param args
     * @throws Exception
     */
    public static void main(String[] args) throws Exception {
        Configuration configuration = new Configuration();
        Tool tool  =  new JobMain();
        int run = ToolRunner.run(configuration, tool, args);
        System.exit(run);
    }
}
```
##### 常见错误
如果遇到如下错误
```text
Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException): Permission denied: user=admin, access=WRITE, inode="/":root:supergroup:drwxr-xr-x
```
直接将hdfs-site.xml当中的权限关闭即可
```xml
<property>
  <name>dfs.permissions</name>
  <value>false</value>
</property>
```
最后重启一下 HDFS 集群
##### 小细节
本地运行完成之后,就可以打成jar包放到服务器上面去运行了,实际工作当中,都是将代码打成jar包,开发main方法作为程序的入口,然后放到集群上面去运行
 
                    
                     
                    
                 
                    
                 
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号