09 2016 档案
摘要:案例六:Map独自直接输出 之前一直没有用过这个map独自输出的模式,就算是输出一些简单的我也会经过一次reduce输出,但是,发现这个map输出的结果跟我预想的有点不一样,我一直以为shuffle的过程会在map结尾,reduce开头进行,会有合并的,可是shuffle只做了分区,排序,然后就直接
阅读全文
摘要:案例五:TOP—N 这个问题比较常见,一般都用于求前几个或者后几个的问题,shuffle有一个默认的排序是正序的,但如果需要逆序的并且暂时还不知道如何重写shuffle的排序规则的时候就用以下方法就行,java中说到排序无非就是比较器,然后结合着集合,这样基本上就能解决我的需求了,但是有个问题需要注
阅读全文
摘要:案例四:mapjoin(对个map共同输入,一个reduce) 这个方法主要解决的是,几个表之间的比较,类似于数据库的内外连接,还有一些左右连接之类的,简而言之就是,A表没有的B表有,B表有的A没有或者AB共有的,类似于这样的问题,话说呢,这就是一种思想,哒哒哒~不仅明白,因为用的也比较多。
阅读全文
摘要:案例三:cleanup 其实这个案例可以不用写这么复杂,不用cleanup也能写,但是为了,突显,突显,突显(重要的事说四遍)cleanup的重要性,琢磨了半天,恩,这样写既可以突显cleanup又显示出我对大集合的各种热爱(哪天把集合的遍历方法搞一下,光Map就有四五种),总而言之呢,写得是复杂了
阅读全文
摘要:案例二:去重(shuffle/HashSet等方法)shuffle主要针对的是key去重HashSet主要针对values去重
阅读全文
摘要:案例二:去重(shuffle/HashSet等方法)shuffle主要针对的是key去重HashSet主要针对values去重
阅读全文
摘要:MapReduce算法形式一:WordCount 这种形式可以做一些网站登陆次数,或者某个电商网站的商品销量啊诸如此类的,主要就是求和,但是求和之前还是要好好清洗数据的,以免数据缺省值太多,影响真实性。 废话不多说,上代码吧,我把注释一行行的都写了~~可可可可~ 先封装了数据行的对象: public
阅读全文
摘要:从Hadoop1到Hadoop2很大程度上解放了Jobtracker资源调度的问题,这就得多亏了yarn平台了。我知道的,除了我们的大豆瓣用的是Mesos,咱们国家可以说应该是99.99%都使用的是yarn,当然了,国外使用的大多是Mesos。(然而我对Mesos并不理解啥,只知道他和yarn一样的
阅读全文
摘要:判断字符串是不是数字? 方法一: /** * 用于验证获取的字符串是不是数字 * @param str * @return */ public static boolean isNumeric(String str) { for (int i = 0; i < str.length(); i++)
阅读全文
摘要:搭建集群后再namenode上查看进程发现除了三个基本进程还可能有别的进程,例如本来在子节点出现的进程出现在了主节点上,namenode按正常来说是有三个进程的:namenode,resourcemanager,secondarynamenode,子节点上有两个进程:nodemanager,data
阅读全文
摘要:解决"no datanode to stop"问题当我停止Hadoop时发现如下信息: no datanode to stop原因:每次namenode format会重新创建一个namenodeId,而tmp/dfs/data下包含了上次format下的id,namenode format清空了n
阅读全文
摘要:用自己电脑搭建hadoop集群的时候总是会遇到各种奇葩的问题,因为虚拟机总是会比真实的环境差很多的,有些奇葩的问题真是让我郁闷不行不行的~~像这个问题,搭了三遍的集群遇见各种奇葩问题,最后找了一个终极大招:但是,但是,前提是,新搭的集群,如果HDFS里面已经有数据了,那就别用了,因为会把你的hado
阅读全文

浙公网安备 33010602011771号