摘要:
1. Principal component analysis algorithmdata preprocessing2. choosing the number of principal components3. reconstruction from compressed representation4. Application of PCA - compression - reduce memory/dist needed to store data - speed up learning algorithm - visualizationbad use of PCA: to pre.. 阅读全文
posted @ 2013-06-29 12:31
ying_vincent
阅读(192)
评论(0)
推荐(0)
摘要:
1. K-means algorithm2. K-means optimization objective3. Random initialization 阅读全文
posted @ 2013-06-29 11:03
ying_vincent
阅读(223)
评论(0)
推荐(0)
摘要:
1. SVM hypothsis2. large margin classification3. kernals and similarityiff1 = 1;if x if far from l^(1), f1 = 04. SVM with kernels5. SVM parameters6. Multi-class classification7. Logistic regression vs SVMs 阅读全文
posted @ 2013-06-29 10:10
ying_vincent
阅读(183)
评论(0)
推荐(0)
浙公网安备 33010602011771号