Circle Problem From 3Blue1Brown (分圆问题)

Background\text{Background}

Last night, lots of students from primary school came to our class to study OI.\text{Last night, lots of students from primary school came to our class to study OI.}
Mark next to me was asked by one of them, "Dude, are you copying codes?"\text{Mark next to me was asked by one of them, "Dude, are you copying codes?"}
Mark was very angry that time cuz he’s just moving his code from IDE to blog.\text{Mark was very angry that time cuz he's just moving his code from IDE to blog.}
So he decided to let them take a HARD test (though he failed).\text{So he decided to let them take a HARD test (though he failed).}
Finally that guy apologized and we started upgrading our test so that it could \text{Finally that guy apologized and we started upgrading our test so that it could }be harder. They’ll take this test this Sunday.\text{be harder. They'll take this test this Sunday.}

Problem\text{Problem}

Interger N and N points in a circle are given. Connect every pair of \text{Interger }N\text{ and }N\text{ points in a circle are given. Connect every pair of }
these points to a edge. There aren’t any 3 edges which shares one point.\text{these points to a edge. There aren't any 3 edges which shares one point.}
Please calculate how many pieces of the circle are cut by these edges.\text{Please calculate how many pieces of the circle are cut by these edges.}

Solution\text{Solution}

Let’s consider some cases with smaller Ns.\text{Let's consider some cases with smaller }N\text{s.}
Easy to get\text{Easy to get}

NN ansans
11 11
22 22
33 44
44 88
55 1616
...... ......

Dude, ans=2N1. Solved.\text{Dude, }ans=2^{N-1}.\text{ Solved.}


But actually it’s wrong.\text{But actually it's wrong.}
These formula \text{These formula }JUST right when N{1,2,3,4,5,6,10}.\text{ right when }N\in\{1,2,3,4,5,6,10\}.

Let’s do some simple problems first.\text{Let's do some simple problems first.}

I. Calculate how many edges are there in the circle;\text{I. Calculate how many edges are there in the circle;}

Every 2 points make a edge, and there’re N points,\because\text{Every 2 points make a edge, and there're }N\text{ points,}
There’re CN2 edges in total.\therefore\text{There're }C_{N}^{2}\text{ edges in total.}

II. Calculate how many points of intersection of these edges.\text{II. Calculate how many points of intersection of these edges.}

It maybe a little difficult, but I think it’s necessary for you guys to think about it.\text{It maybe a little difficult, but I think it's necessary for you guys to think about it.}

Every 2 edges make a point of intersection, every 2 points make a edge,\because\text{Every 2 edges make a point of intersection, every 2 points make a edge,}
and there’re N points,\text{and there're }N\text{ points,}
There’re \therefore\text{There're }N×(N1)×(N2)×(N3)N\times(N-1)\times(N-2)\times(N-3)=CN4 points of intersection in total.=C_{N}^{4}\text{ points of intersection in total.}


Here goes our Euler’s formula in topology. Set a polyhedron which has \text{Here goes our Euler's formula in topology. Set a polyhedron which has }
V vertexes ,F pieces of surface, and E edges. It always meetV\text{ vertexes ,}F\text{ pieces of surface, and }E\text{ edges. It always meet}VE+F=2V-E+F=2
F=EV+2.\therefore F=E-V+2.

Therefore, the answer is CN2+CN+4+21=CN2+CN+4+1. Solved.\text{Therefore, the answer is }C_{N}^{2}+C_{N}+{4}+2-1=C_{N}^{2}+C_{N}+{4}+1.\text{ Solved.}

The End\text{The End}

Video by 3Blue1Brown from bilibili\text{Video by 3Blue1Brown from bilibili}
Reference material\text{Reference material}

posted @ 2019-04-25 14:12  TeacherDai  阅读(148)  评论(0)    收藏  举报