已知方程∑i=0naixi=0\sum_{i=0}^{n}{a_ix^i}=0i=0∑naixi=0求该方程在 [1,m][1,m][1,m] 内的整数解。
有一个秦九韶公式就是 a1x1+a2x2+...+anxn=x(a1+a2x1+a3x2+...+anxn−1)=x(a1+x(a2+a3x1+...+anxn−2))=...=x(a1+x(a2+x(a3+x(...).)))\begin{aligned}&\quad a_1x^1+a_2x^2+...+a_nx^n\\ &=x(a_1+a_2x^1+a_3x^2+...+a_nx^{n-1})\\ &=x(a_1+x(a_2+a_3x^1+...+a_nx^{n-2}))\\ &=...\\ &=x(a_1+x(a_2+x(a_3+x(...).)))\end{aligned}a1x1+a2x2+...+anxn=x(a1+a2x1+a3x2+...+anxn−1)=x(a1+x(a2+a3x1+...+anxn−2))=...=x(a1+x(a2+x(a3+x(...).))) 这样,就证明了原式至多需要做 nnn 次加法和 nnn 次乘法,降低了时间复杂度。
然而这样只能通过 50% 的分数。对于 100% 的数据,取个模即可。