欢迎访问yhm138的博客园博客, 你可以通过 [RSS] 的方式持续关注博客更新

MyAvatar

yhm138

HelloWorld!

一个公式教你背会 矩形波导或圆波导(或者矩形或圆形谐振腔)以纵向分量为领矢得到全部的场表达式

看不懂的我抽空来补充完整
开心!!之前这个我一直没背下来,现在摸到石头边了



以纵向分量为领向矢量

\[\left[ \begin{array}{cccc} E_{u}\\ E_{v}\\ H_{u}\\ H_{v} \end{array} \right ]= \frac{1}{K_c^2} \left[ \begin{array}{cccc} -\gamma& 0 & 0 & {-j\omega\mu}\\ 0& -\gamma &j\omega \mu &0\\ 0& j\omega\epsilon &-\gamma&0 \\ -j\omega \epsilon& 0 &0 &-\gamma \end{array} \right ] \left[ \begin{array}{cccc} \frac{\partial E_z}{h_1\partial u}\\ \frac{\partial E_z}{h_2\partial v}\\ \frac{\partial H_z}{h_1\partial u} \\ \frac{\partial H_z}{h_2\partial v} \end{array} \right ] \]

矩形波导的情况就是

\[u=x,\quad v=y\\ h_1=1,\quad h_2=1 \]

圆波导的情况就是

\[u=r,\quad v=\varphi\\ h_1=1,\quad h_2=r \]

波导,纵向分量为领向矢量

矩形波导\(TE_{mn}\)

\[H_z=H_0\cos(\frac{m\pi}{a}x)\cos(\frac{n\pi}{b}y)e^{-j\beta z}\\ E_z=0 \]

矩形波导\(TM_{mn}\)

\[E_z=E_0\sin(\frac{m\pi}{a}x)\sin(\frac{n\pi}{b}y)e^{-j\beta z}\\ H_z=0 \]

圆波导\(TE_{mn}\)

\[H_z=H_0J_m(K_cr)\mathop{}\limits_{\sin(m\varphi)}^{cos(m\varphi)}e^{-j\beta z}\\ E_z=0 \]

圆波导\(TM_{mn}\)

\[E_z=E_0J_m(K_cr)\mathop{}\limits_{\sin(m\varphi)}^{cos(m\varphi)}e^{-j\beta z}\\ H_z=0 \]






如果是谐振腔的话公式也很像。
4个\(-\gamma\)都变成 \(\frac{\partial}{\partial z}\)

\[\left[ \begin{array}{cccc} E_{u}\\ E_{v}\\ H_{u}\\ H_{v} \end{array} \right ]= \frac{1}{K_c^2} \left[ \begin{array}{cccc} \frac{\partial}{\partial z}& 0 & 0 & {-j\omega\mu}\\ 0& \frac{\partial}{\partial z} &j\omega \mu &0\\ 0& j\omega\epsilon &\frac{\partial}{\partial z}&0 \\ -j\omega \epsilon& 0 &0 &\frac{\partial}{\partial z} \end{array} \right ] \left[ \begin{array}{cccc} \frac{\partial E_z}{h_1\partial u}\\ \frac{\partial E_z}{h_2\partial v}\\ \frac{\partial H_z}{h_1\partial u} \\ \frac{\partial H_z}{h_2\partial v} \end{array} \right ] \]

谐振腔,纵向分量为领向矢量

矩形谐振腔,\(TM_{mnp}\)

\[E_z=2E_0\sin(\frac{m\pi}{a}x)\sin(\frac{n\pi}{b}y)\cos(\frac{p\pi}{l}z)\\ H_z=0 \]

矩形谐振腔,\(TE_{mnp}\)

\[H_z=-2j H_0\cos(\frac{m\pi}{a}x)\cos(\frac{n\pi}{b}y)\sin(\frac{p\pi}{l}z)\\ E_z=0 \]

圆形谐振腔,\(TM_{mnp}\)

\[E_z=2E_0 J_m(K_c r)\mathop{}\limits_{\sin(m\varphi)}^{cos(m\varphi)}\cos(\frac{p\pi}{l}z)\\ H_z=0 \]

圆形谐振腔,\(TE_{mnp}\)

\[H_z=-2j H_0 J_m(K_c r)\mathop{}\limits_{\sin(m\varphi)}^{cos(m\varphi)}\sin(\frac{p\pi}{l}z)\\ E_z=0 \]

其他的

另一个有意思的是Lorentz变换矩阵,虽然用的频率低,但是结构很漂亮

\[\left(\begin{array}{c} x \\ y \\ z \\ i c t \end{array}\right)=\left(\begin{array}{cccc} \gamma & 0 & 0 & i \beta \gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -i \beta \gamma & 0 & 0 & \gamma \end{array}\right)\left(\begin{array}{c} x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ i c t^{\prime} \end{array}\right) \]

其中,

\[\beta:=\frac{u}{c}, \quad \gamma:=\frac{1}{\sqrt{1-\beta^{2}}} \]

Lorentz矩阵是个正交矩阵,\(A^{-1}=A^{\mathsf{T}}\)

posted @ 2020-12-15 15:02  yhm138  阅读(752)  评论(0编辑  收藏  举报