distinct用group by优化

当数据量非常大,在同一个query中计算多个不相关列的distinct时,往往很容易出现数据倾斜现象,导致运行半天都不能得到结果。

比如以下的SQL语句(a, b, c没有相关性):

select distinct(a), distinct(b), distinct(c) from tableName;

 

改进方案:把计算的distinct先group by,然后再计算:

select distinct(t.a), distinct(t.b), distinct(t.c) 
from(
    select a, b, c from tableName
    group by a, b, c;
)t;

 

原理:distinct是在reduce里面计算的,再进行merge,而group by的字段会在map这里分N路hash。group by越多,hash分的越随机。

group by中avg以及sum的处理方式:

select 
    count(distinct a) as a, count(distinct b) as b, 
    count(distinct c) as c, count(distinct d) as d,
    avg(e) as e, 
    sum(f) as f
from tablename;

 

处理方式如下:

select 
    count(distinct a) as a, count(distinct b) as b, 
    count(distinct c) as c, count(distinct d) as d,
    sum(e)/sum(e_count) as e,  // avg的处理
    sum(f) as f  // sum的处理
from (
    select v.a, v.b, v.c, v.d, 
        sum(v.e) as e, 
        sum(v.f) as f,
        sum(v.e_count) as e_count
    from(
        select 
            a, b, c, d, e, f,
            case when e=null then 0 else 1 end as e_count
        from tablename
    )v
    group by v.a, v.b, v.c, v.d
)t;
 

 

posted @ 2014-12-14 10:10  yejinru  阅读(1178)  评论(0编辑  收藏  举报