pytorch中文官方教程(四)——训练分类器
1、代码的坑
images, labels = dataiter.next() # 错误未知 是个坑

解决办法:
用
images, labels = next(dataiter)替换images, labels = dataiter.next()

成功运行!
在网上找python迭代器的写法,也没看到.next()这样子的写法
2、相关代码
"""
我们将按顺序执行以下步骤:
使用torchvision加载并标准化 CIFAR10 训练和测试数据集
定义卷积神经网络
定义损失函数
根据训练数据训练网络
在测试数据上测试网络
"""
"""1.加载并标准化 CIFAR10"""
import torch
import torchvision
import torchvision.transforms as transforms
# TorchVision 数据集的输出是[0, 1]范围的PILImage图像。 我们将它们转换为归一化范围[-1, 1]的张量。 .. 注意:
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='.\\data', train=True,
download=True, transform=transform)
# trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
# shuffle=True, num_workers=2) # 报错原因:在linux系统中可以使用多个子进程加载数据,而在windows系统中不能。所以在windows中要将DataLoader中的num_workers设置为0或者采用默认为0的设置
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root='.\\data', train=False,
download=True, transform=transform)
# testloader = torch.utils.data.DataLoader(testset, batch_size=4,
# shuffle=False, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=0)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# get some random training images
dataiter = iter(trainloader)
# images, labels = dataiter.next() # 错误未知 是个坑
images, labels = next(dataiter)
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
"""2.定义卷积神经网络"""
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
"""3.定义损失函数和优化器"""
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
"""4.训练网络"""
is_train = True
if is_train:
for epoch in range(10): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
"""5.根据测试数据测试网络"""
dataiter = iter(testloader)
# images, labels = dataiter.next()
images, labels = next(dataiter)
# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
net = Net()
PATH = './cifar_net.pth'
net.load_state_dict(torch.load(PATH))
outputs = net(images)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(4)))
# 让我们看一下网络在整个数据集上的表现。
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
# # 嗯,哪些类的表现良好,哪些类的表现不佳:
# class_correct = list(0. for i in range(10))
# class_total = list(0. for i in range(10))
# with torch.no_grad():
# for data in testloader:
# images, labels = data
# outputs = net(images)
# _, predicted = torch.max(outputs, 1)
# c = (predicted == labels).squeeze()
# for i in range(4):
# label = labels[i]
# class_correct[label] += c[i].item()
# class_total[label] += 1
#
# for i in range(10):
# print('Accuracy of %5s : %2d %%' % (
# classes[i], 100 * class_correct[i] / class_total[i]))
# """
# 在 GPU 上进行训练
# """
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#
# # Assuming that we are on a CUDA machine, this should print a CUDA device:
#
# print(device)
# # 然后,这些方法将递归遍历所有模块,并将其参数和缓冲区转换为 CUDA 张量:
# net.to(device)
# # 请记住,您还必须将每一步的输入和目标也发送到 GPU:
# inputs, labels = data[0].to(device), data[1].to(device)
3、输出实例
F:\GoogLeNet-PyTorch-main\envs\Scripts\python.exe F:/my_pytorch/pytorch_official/4_训练分类器.py
Files already downloaded and verified
Files already downloaded and verified
deer dog bird bird
[1, 2000] loss: 2.210
[1, 4000] loss: 1.897
[1, 6000] loss: 1.708
[1, 8000] loss: 1.609
[1, 10000] loss: 1.531
[1, 12000] loss: 1.463
[2, 2000] loss: 1.414
[2, 4000] loss: 1.392
[2, 6000] loss: 1.365
[2, 8000] loss: 1.321
[2, 10000] loss: 1.315
[2, 12000] loss: 1.283
[3, 2000] loss: 1.225
[3, 4000] loss: 1.208
[3, 6000] loss: 1.238
[3, 8000] loss: 1.207
[3, 10000] loss: 1.198
[3, 12000] loss: 1.214
[4, 2000] loss: 1.118
[4, 4000] loss: 1.128
[4, 6000] loss: 1.127
[4, 8000] loss: 1.113
[4, 10000] loss: 1.109
[4, 12000] loss: 1.149
[5, 2000] loss: 1.035
[5, 4000] loss: 1.050
[5, 6000] loss: 1.077
[5, 8000] loss: 1.037
[5, 10000] loss: 1.041
[5, 12000] loss: 1.058
[6, 2000] loss: 0.981
[6, 4000] loss: 1.002
[6, 6000] loss: 1.010
[6, 8000] loss: 0.993
[6, 10000] loss: 1.011
[6, 12000] loss: 0.984
[7, 2000] loss: 0.900
[7, 4000] loss: 0.966
[7, 6000] loss: 0.944
[7, 8000] loss: 0.952
[7, 10000] loss: 0.954
[7, 12000] loss: 0.962
[8, 2000] loss: 0.874
[8, 4000] loss: 0.901
[8, 6000] loss: 0.891
[8, 8000] loss: 0.899
[8, 10000] loss: 0.913
[8, 12000] loss: 0.927
[9, 2000] loss: 0.817
[9, 4000] loss: 0.845
[9, 6000] loss: 0.874
[9, 8000] loss: 0.874
[9, 10000] loss: 0.891
[9, 12000] loss: 0.903
[10, 2000] loss: 0.795
[10, 4000] loss: 0.813
[10, 6000] loss: 0.851
[10, 8000] loss: 0.854
[10, 10000] loss: 0.852
[10, 12000] loss: 0.866
Finished Training
GroundTruth: cat ship ship plane
Predicted: dog plane ship plane
Accuracy of the network on the 10000 test images: 62 %
进程已结束,退出代码0
本文来自博客园,作者:JaxonYe,转载请注明原文链接:https://www.cnblogs.com/yechangxin/articles/16861588.html
侵权必究

浙公网安备 33010602011771号