摘要:
NiN块 回想一下,卷积层的输入和输出由四维张量组成,张量的每个轴分别对应样本、通道、高度和宽度。 另外,全连接层的输入和输出通常是分别对应于样本和特征的二维张量。 NiN的想法是在每个像素位置(针对每个高度和宽度)应用一个全连接层。 如果我们将权重连接到每个空间位置,我们可以将其视为1*1卷积层, 阅读全文
posted @ 2023-11-08 16:38
Yohoc
阅读(71)
评论(0)
推荐(0)
摘要:
VGG块 虽然AlexNet证明深层神经网络卓有成效,但它没有提供一个通用的模板(例如VGG块)来指导后续的研究人员设计新的网络。 在下面的几个章节中,我们将介绍一些常用于设计深层神经网络的启发式概念。 经典卷积神经网络的基本组成部分是下面的这个序列: 带填充以保持分辨率的卷积层; 非线性激活函数, 阅读全文
posted @ 2023-11-08 16:02
Yohoc
阅读(77)
评论(0)
推荐(0)
摘要:
AlexNet相对于LeNet的主要优势包括: 1. 更深的网络结构 AlexNet有8层结构,而LeNet只有5层。网络更加深入有利于学习更抽象的高级特征。 2. 使用ReLU激活函数 AlexNet使用ReLU激活函数,避免梯度消失问题,使得深层网络的训练更加容易。 3. 引入Dropout操作 阅读全文
posted @ 2023-11-08 15:40
Yohoc
阅读(78)
评论(0)
推荐(0)

浙公网安备 33010602011771号