1 """
2 Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.
3 Example 1:
4 Input: n = 12
5 Output: 3
6 Explanation: 12 = 4 + 4 + 4.
7 Example 2:
8 Input: n = 13
9 Output: 2
10 Explanation: 13 = 4 + 9.
11 """
12 """
13 dp[0] = 0
14 dp[1] = dp[0]+1 = 1
15 dp[2] = dp[1]+1 = 2
16 dp[3] = dp[2]+1 = 3
17 dp[4] = Min{ dp[4-1*1]+1, dp[4-2*2]+1 }
18 = Min{ dp[3]+1, dp[0]+1 }
19 = 1
20 dp[5] = Min{ dp[5-1*1]+1, dp[5-2*2]+1 }
21 = Min{ dp[4]+1, dp[1]+1 }
22 = 2
23 .
24 .
25 .
26 dp[13] = Min{ dp[13-1*1]+1, dp[13-2*2]+1, dp[13-3*3]+1 }
27 = Min{ dp[12]+1, dp[9]+1, dp[4]+1 }
28 = 2
29 .
30 .
31 .
32 dp[n] = Min{ dp[n - i*i] + 1 }, n - i*i >=0 && i >= 1
33 dp[n] 表示以n为和的最少平方的和的个数(所求)。
34 dp 数组所有下标已经为完全平方数的数(如1,4,9...)置为 1,加一层 j 遍历找到当前 i 下长度最小的组合。
35 动态方程的意思是:对于每个 i ,比 i 小一个完全平方数的那些数中最小的个数+1就是所求,也就是 dp [ i - j * j ] + 1 。
36 """
37 class Solution1:
38 def numSquares(self, n):
39 dp = [float('inf')]*(n+1)
40 i = 1
41 while i*i <= n:
42 dp[i*i] = 1
43 i += 1
44 for i in range(1, n+1):
45 j = 1
46 while j*j <= i:
47 dp[i] = min(dp[i], dp[i-j*j]+1)
48 j += 1
49 return dp[n]